1,472 research outputs found
Is nonrelativistic gravity possible?
We study nonrelativistic gravity using the Hamiltonian formalism. For the
dynamics of general relativity (relativistic gravity) the formalism is well
known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the
lapse function is constrained correctly, then nonrelativistic gravity is
described by a consistent Hamiltonian system. Surprisingly, nonrelativistic
gravity can have solutions identical to relativistic gravity ones. In
particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of
Horava gravity are locally identical.Comment: 4 pages, v2, typos corrected, published in Physical Review
Cavity polariton optomechanics: Polariton path to fully resonant dispersive coupling in optomechanical resonators
Resonant photoelastic coupling in semiconductor nanostructures opens new
perspectives for strongly enhanced light-sound interaction in optomechanical
resonators. One potential problem, however, is the reduction of the cavity
Q-factor induced by dissipation when the resonance is approached. We show in
this letter that cavity-polariton mediation in the light-matter process
overcomes this limitation allowing for a strongly enhanced photon-phonon
coupling without significant lifetime reduction in the strongly-coupled regime.
Huge optomechanical coupling factors in the PetaHz/nm range are envisaged,
three orders of magnitude larger than the backaction produced by the mechanical
displacement of the cavity mirrors.Comment: 6 pages, 4 figure
Editorial note to "The beginning of the world from the point of view of quantum theory"
This is an editorial note to accompany reprinting as a Golden Oldie in the
Journal of General Relativity and Gravitation of the famous note by Georges
Lemaitre on the quantum birth of the universe, published in Nature in 1931. We
explain why this short (457 words) article can be considered to be the true
"Charter" of the modern Big Bang theory.Comment: This is an editorial comment to accompany reprinting of a classical
paper in the Journal of General Relativity and Gravitation. 16 pages, 2
figure
Comment on ``Deterministic equations of motion and phase ordering dynamics''
Zheng [Phys. Rev. E {\bf 61}, 153 (2000), cond-mat/9909324] claims that phase
ordering dynamics in the microcanonical model displays unusual scaling
laws. We show here, performing more careful numerical investigations, that
Zheng only observed transient dynamics mostly due to the corrections to scaling
introduced by lattice effects, and that Ising-like (model A) phase ordering
actually takes place at late times. Moreover, we argue that energy conservation
manifests itself in different corrections to scaling.Comment: 5 pages, 4 figure
Can a charged dust ball be sent through the Reissner--Nordstr\"{o}m wormhole?
In a previous paper we formulated a set of necessary conditions for the
spherically symmetric weakly charged dust to avoid Big Bang/Big Crunch, shell
crossing and permanent central singularities. However, we did not discuss the
properties of the energy density, some of which are surprising and seem not to
have been known up to now. A singularity of infinite energy density does exist
-- it is a point singularity situated on the world line of the center of
symmetry. The condition that no mass shell collapses to if it had initially thus turns out to be still insufficient for avoiding a
singularity. Moreover, at the singularity the energy density is
direction-dependent: when we approach the singular
point along a const hypersurface and when we
approach that point along the center of symmetry. The appearance of
negative-energy-density regions turns out to be inevitable. We discuss various
aspects of this property of our configuration. We also show that a permanently
pulsating configuration, with the period of pulsation independent of mass, is
possible only if there exists a permanent central singularity.Comment: 30 pages, 21 figures; several corrections after referee's comments, 4
figures modifie
Optical alignment and polarization conversion of neutral exciton spin in individual InAs/GaAs quantum dots
We investigate exciton spin memory in individual InAs/GaAs self-assembled
quantum dots via optical alignment and conversion of exciton polarization in a
magnetic field. Quasiresonant phonon-assisted excitation is successfully
employed to define the initial spin polarization of neutral excitons. The
conservation of the linear polarization generated along the bright exciton
eigenaxes of up to 90% and the conversion from circular- to linear polarization
of up to 47% both demonstrate a very long spin relaxation time with respect to
the radiative lifetime. Results are quantitatively compared with a model of
pseudo-spin 1/2 including heavy-to-light hole mixing.Comment: 5 pages, 3 figure
Macroscopic Discontinuous Shear Thickening vs Local Shear Jamming in Cornstarch
We study the emergence of discontinuous shear-thickening (DST) in cornstarch,
by combining macroscopic rheometry with local Magnetic Resonance Imaging (MRI)
measurements. We bring evidence that macroscopic DST is observed only when the
flow separates into a low-density flowing and a high-density jammed region. In
the shear-thickened steady state, the local rheology in the flowing region, is
not DST but, strikingly, is often shear-thinning. Our data thus show that the
stress jump measured during DST, in cornstach, does not capture a secondary,
high-viscosity branch of the local steady rheology, but results from the
existence of a shear jamming limit at volume fractions quite significantly
below random close packing.Comment: To be published in PR
Velocity dominated singularities in the cheese slice universe
We investigate the properties of spacetimes resulting from matching together
exact solutions using the Darmois matching conditions. In particular we focus
on the asymptotically velocity term dominated property (AVTD). We propose a
criterion that can be used to test if a spacetime constructed from a matching
can be considered AVTD. Using the Cheese Slice universe as an example, we show
that a spacetime constructed from a such a matching can inherit the AVTD
property from the original spacetimes. Furthermore the singularity resulting
from this particular matching is an AVTD singularity.Comment: 11 pages, 3 figures, accepted for publication in the International
Journal of Modern Physics
Noise-induced macroscopic bifurcations in globally-coupled chaotic units
Large populations of globally-coupled identical maps subjected to independent
additive noise are shown to undergo qualitative changes as the features of the
stochastic process are varied. We show that for strong coupling, the collective
dynamics can be described in terms of a few effective macroscopic degrees of
freedom, whose deterministic equations of motion are systematically derived
through an order parameter expansion.Comment: Phys. Rev. Lett., accepte
- …