6,071 research outputs found
Tuning Modular Networks with Weighted Losses for Hand-Eye Coordination
This paper introduces an end-to-end fine-tuning method to improve hand-eye
coordination in modular deep visuo-motor policies (modular networks) where each
module is trained independently. Benefiting from weighted losses, the
fine-tuning method significantly improves the performance of the policies for a
robotic planar reaching task.Comment: 2 pages, to appear in the Deep Learning for Robotic Vision (DLRV)
Workshop in CVPR 201
Accidental Father-to-Son HIV-1 Transmission During the Seroconversion Period
A 4-year-old child born to an HIV-1 seronegative mother was diagnosed with HIV-1, the main risk factor being transmission from the child's father who was seroconverting at the time of the child's birth. In the context of a forensic investigation, we aimed to identify the source of infection of the child and date of the transmission event. Samples were collected from the father and child at two time points about 4 years after the child's birth. Partial segments of three HIV-1 genes (gag, pol, and env) were sequenced and maximum likelihood (ML) and Bayesian methods were used to determine direction and estimate date of transmission. Neutralizing antibodies were determined using a single cycle assay. Bayesian trees displayed a paraphyletic-monophyletic topology in all three genomic regions, with the father's host label at the root, which is consistent with father-to-son transmission. ML trees found similar topologies in gag and pol and a monophyletic-monophyletic topology in env. Analysis of the time of the most recent common ancestor of each HIV-1 gene population indicated that the child was infected shortly after the father. Consistent with the infection history, both father and son developed broad and potent HIV-specific neutralizing antibody responses. In conclusion, the direction of transmission implicated the father as the source of transmission. Transmission occurred during the seroconversion period when the father was unaware of the infection and was likely accidental. This case shows how genetic, phylogenetic, and serological data can contribute for the forensic investigation of HIV transmission.info:eu-repo/semantics/publishedVersio
Investigation of top mass measurements with the ATLAS detector at LHC
Several methods for the determination of the mass of the top quark with the
ATLAS detector at the LHC are presented. All dominant decay channels of the top
quark can be explored. The measurements are in most cases dominated by
systematic uncertainties. New methods have been developed to control those
related to the detector. The results indicate that a total error on the top
mass at the level of 1 GeV should be achievable.Comment: 47 pages, 40 figure
The Impact of Isospin Breaking on the Distribution of Transition Probabilities
In the present paper we investigate the effect of symmetry breaking in the
statistical distributions of reduced transition amplitudes and reduced
transition probabilities. These quantities are easier to access experimentally
than the components of the eigenvectors and were measured by Adams et al. for
the electromagnetic transitions in ^{26}Al. We focus on isospin symmetry
breaking described by a matrix model where both, the Hamiltonian and the
electromagnetic operator, break the symmetry. The results show that for partial
isospin conservation, the statistical distribution of the reduced transition
probability can considerably deviate from the Porter-Thomas distribution.Comment: 16 pages, 8 figures, submitted to PR
Quantum Ergodicity and Localization in Conservative Systems: the Wigner Band Random Matrix Model
First theoretical and numerical results on the global structure of the energy
shell, the Green function spectra and the eigenfunctions, both localized and
ergodic, in a generic conservative quantum system are presented. In case of
quantum localization the eigenfunctions are shown to be typically narrow and
solid, with centers randomly scattered within the semicircle energy shell while
the Green function spectral density (local spectral density of states) is
extended over the whole shell, but sparse.Comment: 4 pages in RevTex and 4 Postscript figures; presented to Phys. Lett.
Massive Dirac fermions and the zero field quantum Hall effect
Through an explicit calculation for a Lagrangian in quantum electrodynamics
in (2+1)-space--time dimensions (QED), making use of the relativistic Kubo
formula, we demonstrate that the filling factor accompanying the quantized
electrical conductivity for massive Dirac fermions of a single species in two
spatial dimensions is a half (in natural units) when time reversal and parity
symmetries of the Lagrangian are explicitly broken by the fermion mass term. We
then discuss the most general form of the QED Lagrangian, both for
irreducible and reducible representations of the Dirac matrices in the plane,
with emphasis on the appearance of a Chern-Simons term. We also identify the
value of the filling factor with a zero field quantum Hall effect (QHE).Comment: 15 pages. Accepted in Jour. Phys.
Mesoscopic motion of atomic ions in magnetic fields
We introduce a semiclassical model for moving highly excited atomic ions in a
magnetic field which allows us to describe the mixing of the Landau orbitals of
the center of mass in terms of the electronic excitation and magnetic field.
The extent of quantum energy flow in the ion is investigated and a crossover
from localization to delocalization with increasing center of mass energy is
detected. It turns out that our model of the moving ion in a magnetic field is
closely connected to models for transport in disordered finite-size wires.Comment: 4 pages, 2 figures, subm. to Phys.Rev.A, Rap.Co
QuantUM: Quantitative Safety Analysis of UML Models
When developing a safety-critical system it is essential to obtain an
assessment of different design alternatives. In particular, an early safety
assessment of the architectural design of a system is desirable. In spite of
the plethora of available formal quantitative analysis methods it is still
difficult for software and system architects to integrate these techniques into
their every day work. This is mainly due to the lack of methods that can be
directly applied to architecture level models, for instance given as UML
diagrams. Also, it is necessary that the description methods used do not
require a profound knowledge of formal methods. Our approach bridges this gap
and improves the integration of quantitative safety analysis methods into the
development process. All inputs of the analysis are specified at the level of a
UML model. This model is then automatically translated into the analysis model,
and the results of the analysis are consequently represented on the level of
the UML model. Thus the analysis model and the formal methods used during the
analysis are hidden from the user. We illustrate the usefulness of our approach
using an industrial strength case study.Comment: In Proceedings QAPL 2011, arXiv:1107.074
Discrete breathers in polyethylene chain
The existence of discrete breathers (DBs), or intrinsic localized modes
(localized periodic oscillations of transzigzag) is shown. In the localization
region periodic contraction-extension of valence C-C bonds occurs which is
accompanied by decrease-increase of valence angles. It is shown that the
breathers present in thermalized chain and their contribution dependent on
temperature has been revealed.Comment: 5 pages, 6 figure
- …