26 research outputs found

    Is sequential cranial ultrasound reliable for detection of white matter injury in very preterm infants?

    Get PDF
    Cranial ultrasound (cUS) may not be reliable for detection of diffuse white matter (WM) injury. Our aim was to assess in very preterm infants the reliability of a classification system for WM injury on sequential cUS throughout the neonatal period, using magnetic resonance imaging (MRI) as reference standard. In 110 very preterm infants (gestational age < 32 weeks), serial cUS during admission (median 8, range 4-22) and again around term equivalent age (TEA) and a single MRI around TEA were performed. cUS during admission were assessed for presence of WM changes, and contemporaneous cUS and MRI around TEA additionally for abnormality of lateral ventricles. Sequential cUS (from birth up to TEA) and MRI were classified as normal/mildly abnormal, moderately abnormal, or severely abnormal, based on a combination of findings of the WM and lateral ventricles. Predictive values of the cUS classification were calculated. Sequential cUS were classified as normal/mildly abnormal, moderately abnormal, and severely abnormal in, respectively, 22%, 65%, and 13% of infants and MRI in, respectively, 30%, 52%, and 18%. The positive predictive value of the cUS classification for the MRI classification was high for severely abnormal WM (0.79) but lower for normal/mildly abnormal (0.67) and moderately abnormal (0.64) WM. Sequential cUS during the neonatal period detects severely abnormal WM in very preterm infants but is less reliable for mildly and moderately abnormal WM. MRI around TEA seems needed to reliably detect WM injury in very preterm infants.Epidemiology in Pediatrics and Child Healt

    Feasibility study to unveil the potential: considerations of constrained spherical deconvolution tractography with unsedated neonatal diffusion brain MRI data

    Get PDF
    Purpose: The study aimed to (1) assess the feasibility constrained spherical deconvolution (CSD) tractography to reconstruct crossing fiber bundles with unsedated neonatal diffusion MRI (dMRI), and (2) demonstrate the impact of spatial and angular resolution and processing settings on tractography and derived quantitative measures. Methods: For the purpose of this study, the term-equivalent dMRIs (single-shell b800, and b2000, both 5 b0, and 45 gradient directions) of two moderate-late preterm infants (with and without motion artifacts) from a local cohort [Brain Imaging in Moderate-late Preterm infants (BIMP) study; Calgary, Canada] and one infant from the developing human connectome project with high-quality dMRI (using the b2600 shell, comprising 20 b0 and 128 gradient directions, from the multi-shell dataset) were selected. Diffusion tensor imaging (DTI) and CSD tractography were compared on b800 and b2000 dMRI. Varying image resolution modifications, (pre-)processing and tractography settings were tested to assess their impact on tractography. Each experiment involved visualizing local modeling and tractography for the corpus callosum and corticospinal tracts, and assessment of morphological and diffusion measures. Results: Contrary to DTI, CSD enabled reconstruction of crossing fibers. Tractography was susceptible to image resolution, (pre-) processing and tractography settings. In addition to visual variations, settings were found to affect streamline count, length, and diffusion measures (fractional anisotropy and mean diffusivity). Diffusion measures exhibited variations of up to 23%. Conclusion: Reconstruction of crossing fiber bundles using CSD tractography with unsedated neonatal dMRI data is feasible. Tractography settings affected streamline reconstruction, warranting careful documentation of methods for reproducibility and comparison of cohorts

    Feasibility study to unveil the potential: considerations of constrained spherical deconvolution tractography with unsedated neonatal diffusion brain MRI data

    Get PDF
    Purpose: The study aimed to (1) assess the feasibility constrained spherical deconvolution (CSD) tractography to reconstruct crossing fiber bundles with unsedated neonatal diffusion MRI (dMRI), and (2) demonstrate the impact of spatial and angular resolution and processing settings on tractography and derived quantitative measures. Methods: For the purpose of this study, the term-equivalent dMRIs (single-shell b800, and b2000, both 5 b0, and 45 gradient directions) of two moderate-late preterm infants (with and without motion artifacts) from a local cohort [Brain Imaging in Moderate-late Preterm infants (BIMP) study; Calgary, Canada] and one infant from the developing human connectome project with high-quality dMRI (using the b2600 shell, comprising 20 b0 and 128 gradient directions, from the multi-shell dataset) were selected. Diffusion tensor imaging (DTI) and CSD tractography were compared on b800 and b2000 dMRI. Varying image resolution modifications, (pre-)processing and tractography settings were tested to assess their impact on tractography. Each experiment involved visualizing local modeling and tractography for the corpus callosum and corticospinal tracts, and assessment of morphological and diffusion measures. Results: Contrary to DTI, CSD enabled reconstruction of crossing fibers. Tractography was susceptible to image resolution, (pre-) processing and tractography settings. In addition to visual variations, settings were found to affect streamline count, length, and diffusion measures (fractional anisotropy and mean diffusivity). Diffusion measures exhibited variations of up to 23%. Conclusion: Reconstruction of crossing fiber bundles using CSD tractography with unsedated neonatal dMRI data is feasible. Tractography settings affected streamline reconstruction, warranting careful documentation of methods for reproducibility and comparison of cohorts

    Consensus Approach for Standardizing the Screening and Classification of Preterm Brain Injury Diagnosed With Cranial Ultrasound: A Canadian Perspective

    Get PDF
    Acquired brain injury remains common in very preterm infants and is associated with significant risks for short- and long-term morbidities. Cranial ultrasound has been widely adopted as the first-line neuroimaging modality to study the neonatal brain. It can reliably detect clinically significant abnormalities that include germinal matrix and intraventricular hemorrhage, periventricular hemorrhagic infarction, post-hemorrhagic ventricular dilatation, cerebellar hemorrhage, and white matter injury. The purpose of this article is to provide a consensus approach for detecting and classifying preterm brain injury to reduce variability in diagnosis and classification between neonatologists and radiologists. Our overarching goal with this work was to achieve homogeneity between different neonatal intensive care units across a large country (Canada) with regards to classification, timing of brain injury screening and frequency of follow up imaging. We propose an algorithmic approach that can help stratify different grades of germinal matrix-intraventricular hemorrhage, white matter injury, and ventricular dilatation in very preterm infants

    Tractography of developing white matter of the internal capsule and corpus callosum in very preterm infants

    Get PDF
    To investigate in preterm infants associations between Diffusion Tensor Imaging (DTI) parameters of the posterior limb of the internal capsule (PLIC) and corpus callosum (CC) and age, white matter (WM) injury and clinical factors. In 84 preterm infants DTI was performed between 40-62 weeks postmenstrual age on 3 T MR. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) values and fibre lengths through the PLIC and the genu and splenium were determined. WM injury was categorised as normal/mildly, moderately and severely abnormal. Associations between DTI parameters and age, WM injury and clinical factors were analysed. A positive association existed between FA and age at imaging for fibres through the PLIC (r = 0.48 p < 0.001) and splenium (r = 0.24 p < 0.01). A negative association existed between ADC and age at imaging for fibres through the PLIC (r = -0.65 p < 0.001), splenium (r = -0.35 p < 0.001) and genu (r = -0.53 p < 0.001). No association was found between DTI parameters and gestational age, degree of WM injury or categorical clinical factors. These results indicate that in our cohort of very preterm infants, at this young age, the development of the PLIC and CC is ongoing and independent of the degree of prematurity or WM injury.Neuro Imaging Researc

    Proceedings of the 13th International Newborn Brain Conference: Neuro-imaging studies

    Get PDF

    Proceedings of the 13th International Newborn Brain Conference: Neuroprotection strategies in the neonate

    Get PDF

    Proceedings of the 13th International Newborn Brain Conference: Neonatal Neurocritical Care, Seizures, and Continuous EEG monitoring

    Get PDF

    Social Media Recruitment Strategies to Recruit Pregnant Women Into a Longitudinal Observational Cohort Study: Usability Study

    No full text
    BackgroundUse of social media for study recruitment is becoming increasingly common. Previous studies have typically focused on using Facebook; however, there are limited data to support the use of other social media platforms for participant recruitment, notably in the context of a pregnancy study. ObjectiveOur study aimed to evaluate the effectiveness of Facebook, Twitter, and Instagram in recruiting a representative sample of pregnant women in a longitudinal pregnancy cohort study in Calgary, Alberta, between September 27, 2021, and April 24, 2022. MethodsPaid advertisements were targeted at 18- to 50-year-old women in Calgary, with interests in pregnancy. Data regarding reach, link clicks, and costs were collected through Facebook Ads Manager (Meta Platforms, Inc) and Twitter Analytics (Twitter, Inc). The feasibility of each platform for recruitment was assessed based on the recruitment rate and cost-effectiveness. The demographic characteristics of the participants recruited through each source were compared using the chi-square test. ResultsPaid advertisements reached 159,778 social media users, resulting in 2390 link clicks and 324 participants being recruited. Facebook reached and recruited the highest number of participants (153/324, 47.2%), whereas Instagram saw the highest number of link clicks relative to the number of users who saw the advertisement (418/19,764, 2.11%). Facebook and Instagram advertisements were cost-effective, with an average cost-per-click of CAD 0.65(US0.65 (US 0.84; SD 0.27,US0.27, US 0.35) and cost-per-completer of CAD 7.89(US7.89 (US 10.25; SD CAD 4.08,US4.08, US 5.30). Twitter advertisements were less successful in terms of recruitment and costs. Demographic characteristics of participants did not differ based on recruitment source, except for education and income, where more highly educated and higher-income participants were recruited through Instagram or Twitter. Many issues related to fraudulent responses were encountered throughout the recruitment period. ConclusionsPaid social media advertisements (especially Facebook and Instagram) are feasible and cost-effective methods for recruiting a large sample of pregnant women for survey-based research. However, future research should be aware of the potential for fraudulent responses when using social media for recruitment and consider strategies to mitigate this problem
    corecore