14,055 research outputs found

    Resolution of Nested Neuronal Representations Can Be Exponential in the Number of Neurons

    Get PDF
    Collective computation is typically polynomial in the number of computational elements, such as transistors or neurons, whether one considers the storage capacity of a memory device or the number of floating-point operations per second of a CPU. However, we show here that the capacity of a computational network to resolve real-valued signals of arbitrary dimensions can be exponential in N, even if the individual elements are noisy and unreliable. Nested, modular codes that achieve such high resolutions mirror the properties of grid cells in vertebrates, which underlie spatial navigation

    Near-Infrared Spectroscopy of McNeil's Nebula Object

    Full text link
    We present 0.8-5.2 micron spectroscopy of the compact source at the base of a variable nebula (McNeil's Nebula Object) in the Lynds 1630 dark cloud that went into outburst in late 2003. The spectrum of this object reveals an extremely red continuum, CO bands at 2.3-2.5 microns in emission, a deep 3.0 micron ice absorption feature, and a solid state CO absorption feature at 4.7 microns. In addition, emission lines of H, Ca II, Mg I, and Na I are present. The Paschen lines exhibit P Cygni profiles, as do two lines of He I, although the emission features are very weak in the latter. The Brackett lines, however, are seen to be purely in emission. The P Cygni profiles clearly indicate that mass outflow is occurring in a wind with a velocity of ~400 km/s. The H line ratios do not yield consistent estimates of the reddening, nor do they agree with the extinction estimated from the ice feature (A_V ~ 11). We propose that these lines are optically thick and are produced in a dense, ionized wind. The near-infrared spectrum does not appear similar to any known FUor or EXor object. However, all evidence suggests that McNeil's Nebula Object is a heavily-embedded low-mass Class I protostar, surrounded by a disk, whose brightening is due to a recent accretion event.Comment: 11 pages, 2 ps figures, accepted for publication in ApJ Letter

    Citation Distributions in High Energy Physics

    Get PDF
    The probability that a given paper in the SPIRES data base has xx citations is well described by simple power laws, P(x)∝x−αP(x) \propto x^{-\alpha}, with α≈1.2\alpha \approx 1.2 for xx less than 50 citations and α≈2.3\alpha \approx 2.3 for 50 or more citations. A consideration of citation distribution by subfield shows the data base to be remarkably homogeneous. We demonstrate the extreme improbability that the citation records of selected individuals and institutions have been obtained by a random draw on the resulting distribution

    Fibrational induction meets effects

    Get PDF
    This paper provides several induction rules that can be used to prove properties of effectful data types. Our results are semantic in nature and build upon Hermida and Jacobs’ fibrational formulation of induction for polynomial data types and its extension to all inductive data types by Ghani, Johann, and Fumex. An effectful data type ÎŒ(TF) is built from a functor F that describes data, and a monad T that computes effects. Our main contribution is to derive induction rules that are generic over all functors F and monads T such that ÎŒ(TF) exists. Along the way, we also derive a principle of definition by structural recursion for effectful data types that is similarly generic. Our induction rule is also generic over the kinds of properties to be proved: like the work on which we build, we work in a general fibrational setting and so can accommodate very general notions of properties, rather than just those of particular syntactic forms. We give examples exploiting the generality of our results, and show how our results specialize to those in the literature, particularly those of Filinski and StĂžvring

    Highly Entangled Ground States in Tripartite Qubit Systems

    Full text link
    We investigate the creation of highly entangled ground states in a system of three exchange-coupled qubits arranged in a ring geometry. Suitable magnetic field configurations yielding approximate GHZ and exact W ground states are identified. The entanglement in the system is studied at finite temperature in terms of the mixed-state tangle tau. By adapting a steepest-descent optimization algorithm we demonstrate that tau can be evaluated efficiently and with high precision. We identify the parameter regime for which the equilibrium entanglement of the tripartite system reaches its maximum.Comment: 4 pages, 2 figure

    Improvements to the Method of Dispersion Relations for B Nonleptonic Decays

    Get PDF
    We bring some clarifications and improvements to the method of dispersion relations in the external masses variables, that we proposed recently for investigating the final state interactions in the B nonleptonic decays. We first present arguments for the existence of an additional term in the dispersion representation, which arises from an equal-time commutator in the LSZ formalism and can be approximated by the conventional factorized amplitude. The reality properties of the spectral function and the Goldberger-Treiman procedure to perform the hadronic unitarity sum are analyzed in more detail. We also improve the treatment of the strong interaction part by including the contributions of both t and u-channel trajectories in the Regge amplitudes. Applications to the B0→π+π−B^0\to \pi^+\pi^- and B+→π0K+B^+\to \pi^0 K^+ decays are presented.Comment: 16 pages, 4 new figures. modifications of the dispersion representatio

    The prediction of macrophyte species occurrence in Swiss ponds

    Get PDF
    The study attempted to model the abundance of aquatic plant species recorded in a range of ponds in Switzerland. A stratified sample of 80 ponds, distributed all over the country, provided input data for model development. Of the 154 species recorded, 45 were selected for modelling. A total of 14 environmental parameters were preselected as candidate explanatory variables. Two types of statistical tools were used to explore the data and to develop the predictive models: linear regression (LR) and generalized additive models (GAMs). Six LR species models had a reasonable predictive ability (30-50% of variance explained by the selected predictors). There was a gradient in the quality of the 45 GAM models. Ten species models exhibited both a good fit and statistical robustness: Lemnaminor, Phragmitesaustralis, Lysimachiavulgaris, Galiumpalustre, Lysimachianummularia, Irispseudacorus, Lythrumsalicaria, Lycopuseuropaeus, Phalarisarundinacea, Alismaplantago-aquatica, Schoenoplectuslacustris, Carexnigra. Altitude appeared to be a key explanatory variable in most of the species models. In some cases, the degree to which the shore was shaded, connectivity between water bodies, pond area, mineral nitrogen levels, pond age, pond depth, and the extent of agriculture or pasture in the catchment were selected as additional explanatory variables. The species models demonstrated that it is possible to predict species abundance of aquatic macrophytes and that each species responded individually to distinct environmental variable

    Technical Design Report for PANDA Electromagnetic Calorimeter (EMC)

    Get PDF
    This document presents the technical layout and the envisaged performance of the Electromagnetic Calorimeter (EMC) for the PANDA target spectrometer. The EMC has been designed to meet the physics goals of the PANDA experiment. The performance figures are based on extensive prototype tests and radiation hardness studies. The document shows that the EMC is ready for construction up to the front-end electronics interface

    A Minimization Method for Relativistic Electrons in a Mean-Field Approximation of Quantum Electrodynamics

    Full text link
    We study a mean-field relativistic model which is able to describe both the behavior of finitely many spin-1/2 particles like electrons and of the Dirac sea which is self-consistently polarized in the presence of the real particles. The model is derived from the QED Hamiltonian in Coulomb gauge neglecting the photon field. All our results are non-perturbative and mathematically rigorous.Comment: 18 pages, 3 figure

    The influence of self-citation corrections on Egghe's g index

    Full text link
    The g index was introduced by Leo Egghe as an improvement of Hirsch's index h for measuring the overall citation record of a set of articles. It better takes into account the highly skewed frequency distribution of citations than the h index. I propose to sharpen this g index by excluding the self-citations. I have worked out nine practical cases in physics and compare the h and g values with and without self-citations. As expected, the g index characterizes the data set better than the h index. The influence of the self-citations appears to be more significant for the g index than for the h index.Comment: 9 pages, 2 figures, submitted to Scientometric
    • 

    corecore