16 research outputs found

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Detecting Introgression Between Members of theFusarium fujikuroiandF. oxysporumSpecies Complexes by Comparative Mitogenomics

    No full text
    Contains fulltext : 220368.pdf (publisher's version ) (Open Access

    Live and dead qPCR detection demonstrates that feeding of Nosema ceranae results in infection in the honey bee but not the bumble bee

    No full text
    As the honey bee and bumble bee may suffer from the same or related microbial pathogens, cross contamination from commercially reared Bombus spp. to honey bees and wild bumble bees and vice versa is a major concern. Honey bee-collected pollen to feed commercially reared Bombus spp. is a potential risk. Nosema spp. is a fungal pathogen in bees. In this study, we developed new quantitative detection tools based on the detection of RNA using a TaqMan-based RT-qPCR for Nosema ceranae and Nosema apis, with extraction controls based on the actin gene of honey bees and bumble bees, respectively. These tools were subsequently applied to study the epidemiology of N. ceranae, a main disease in honey bees. We screened gamma radiation and cold treatment sterilisation for their efficacy to kill N. ceranae spores fed in sugar water and in pollen to honey bees and bumble bees, respectively. N. ceranae infection in adult bumble bees was checked. Spores passing the inter-alimentary track were found but no infection was observed. N. ceranae spores were fed to honey bees. Their presence and multiplication were demonstrated, showing the spores were both viable and infectious. Our results indicate that N. ceranae found in honey bees cannot infect commercially reared bumble bees (Bombus terrestris) and, that gamma radiation effectively kills N. ceranae. The highly specific and sensitive molecular assays developed, were exploited to detect N. ceranae in pollen and faeces, which would allow more comprehensive epidemiological studies on this important pathogen

    Comparative genomics of chytrid fungi reveal insights into the obligate biotrophic and pathogenic lifestyle of Synchytrium endobioticum

    No full text
    Synchytrium endobioticum is an obligate biotrophic soilborne Chytridiomycota (chytrid) species that causes potato wart disease, and represents the most basal lineage among the fungal plant pathogens. We have chosen a functional genomics approach exploiting knowledge acquired from other fungal taxa and compared this to several saprobic and pathogenic chytrid species. Observations linked to obligate biotrophy, genome plasticity and pathogenicity are reported. Essential purine pathway genes were found uniquely absent in S. endobioticum, suggesting that it relies on scavenging guanine from its host for survival. The small gene-dense and intron-rich chytrid genomes were not protected for genome duplications by repeat-induced point mutation. Both pathogenic chytrids Batrachochytrium dendrobatidis and S. endobioticum contained the largest amounts of repeats, and we identified S. endobioticum specific candidate effectors that are associated with repeat-rich regions. These candidate effectors share a highly conserved motif, and show isolate specific duplications. A reduced set of cell wall degrading enzymes, and LysM protein expansions were found in S. endobioticum, which may prevent triggering plant defense responses. Our study underlines the high diversity in chytrids compared to the well-studied Ascomycota and Basidiomycota, reflects characteristic biological differences between the phyla, and shows commonalities in genomic features among pathogenic fungi.</p

    Comparative genomics of chytrid fungi reveal insights into the obligate biotrophic and pathogenic lifestyle of Synchytrium endobioticum

    No full text
    Synchytrium endobioticum is an obligate biotrophic soilborne Chytridiomycota (chytrid) species that causes potato wart disease, and represents the most basal lineage among the fungal plant pathogens. We have chosen a functional genomics approach exploiting knowledge acquired from other fungal taxa and compared this to several saprobic and pathogenic chytrid species. Observations linked to obligate biotrophy, genome plasticity and pathogenicity are reported. Essential purine pathway genes were found uniquely absent in S. endobioticum, suggesting that it relies on scavenging guanine from its host for survival. The small gene-dense and intron-rich chytrid genomes were not protected for genome duplications by repeat-induced point mutation. Both pathogenic chytrids Batrachochytrium dendrobatidis and S. endobioticum contained the largest amounts of repeats, and we identified S. endobioticum specific candidate effectors that are associated with repeat-rich regions. These candidate effectors share a highly conserved motif, and show isolate specific duplications. A reduced set of cell wall degrading enzymes, and LysM protein expansions were found in S. endobioticum, which may prevent triggering plant defense responses. Our study underlines the high diversity in chytrids compared to the well-studied Ascomycota and Basidiomycota, reflects characteristic biological differences between the phyla, and shows commonalities in genomic features among pathogenic fungi.</p

    Molecular characterization and comparisons of potato wart (Synchytrium endobioticum) in historic collections to recent findings in Canada and the Netherlands

    No full text
    Synchytrium endobioticum (Schilb.) Perc. is a chytrid fungus causing potato wart disease and is one of the most important quarantine diseases on cultivated potato. Infected host tissues develop warts rendering the crop unmarketable. Resting spores, that can remain viable and infectious for decades, are formed in warted tissues and are released into the surrounding soil when host tissue decays. To better understand the pathogen’s diversity and to potentially uncover pathways of migrations and introduction events, molecular characterization was performed on the historical S. endobioticum resting spore collection of the Dutch National Plant Protection Organization. Mitochondrial genomes were assembled and annotated, and four novel structural variants were identified from these materials with intronic presence-absence variation in cox1 or cob genes and structural variation in the dpoB – TIR region. Several fungal isolates were shown to contain mixtures of structural variants. We analyzed the mitogenomic sequences obtained from recent potato wart disease findings in Canada and the Netherlands in the context of the historical materials and found that fungal isolates from the new Dutch outbreak contained a specific mixture of mitogenomic variants previously not observed in the Netherlands. Based on the mitogenomic profile, pathotype 38(Nevşehir) was suspected which was later verified with the Spieckermann bioassay. To further facilitate dissemination of data and interactive visual analytics we created a public Nextstrain webpage with S. endobioticum mitogenomic sequences and associated metadata on their geographic origin, pathotype identity and (mixture) of mitogenomic variants (https://nextstrain.nrcnvwa.nl/Sendo)
    corecore