2,323 research outputs found

    Does the presence of multiple β-lactamases in Gram-negative bacilli impact the results of antimicrobial susceptibility tests and extended-spectrum β-lactamase and carbapenemase confirmation methods?

    Get PDF
    Objectives: Many multidrug-resistant Gram-negative bacilli (MDR-GNB) harbour multiple β-lactamases. The aim of this study was to assess the impact of multiple β-lactamase carriage on the accuracy of susceptibility tests and extended-spectrum β-lactamase (ESBL) and carbapenemase confirmation methods. Methods: A total of 50 MDR-GNB, of which 29 carried multiple β-lactamases, underwent broth microdilution (BMD) and disk diffusion (DD) testing as well as confirmation tests for ESBLs and carbapenemases. Whole-genome sequencing (WGS) was used for β-lactamase gene identification. Results: Categorical agreement of BMD and DD testing results ranged from 86.5 to 97.7% for 10 β-lactam agents. BMD and DD algorithms for ESBL detection were highly variable; 6 of 8 positive strains carried an ESBL plus a carbapenemase or an AmpC enzyme, which may confound antimicrobial selection. The sensitivity and specificity of the modified carbapenem inactivation method (mCIM) were both 100%, whilst mCIM and EDTA-modified carbapenem inactivation method (eCIM) when used together to differentiate serine from metallo-β-lactamase carriage were both 96%. XpertŽ Carba-R results (in vitro diagnostic test) were consistent with WGS results. Predicting phenotypic carbapenem resistance from WGS data overall showed 100% specificity but only 66.7% sensitivity for Enterobacterales isolates that were non-susceptible to imipenem and meropenem. Conclusions: Multiple β-lactamases in MDR-GNB does not impact DD results, the utility of mCIM/eCIM tests, or Xpert Carba-R results. However, ESBL algorithms produced inconsistent results and predicting carbapenem resistance from WGS data was problematic in such strains

    Does the Presence of Multiple β-Lactamases in Gram-Negative Bacilli Impact the Results of Antimicrobial Susceptibility Tests and Extended-Spectrum β-Lactamase and Carbapenemase Confirmation Methods?

    Get PDF
    Objectives: Many multidrug-resistant Gram-negative bacilli (MDR-GNB) harbour multiple β-lactamases. The aim of this study was to assess the impact of multiple β-lactamase carriage on the accuracy of susceptibility tests and extended-spectrum β-lactamase (ESBL) and carbapenemase confirmation methods. Methods: A total of 50 MDR-GNB, of which 29 carried multiple β-lactamases, underwent broth microdilution (BMD) and disk diffusion (DD) testing as well as confirmation tests for ESBLs and carbapenemases. Whole-genome sequencing (WGS) was used for β-lactamase gene identification. Results: Categorical agreement of BMD and DD testing results ranged from 86.5 to 97.7% for 10 β-lactam agents. BMD and DD algorithms for ESBL detection were highly variable; 6 of 8 positive strains carried an ESBL plus a carbapenemase or an AmpC enzyme, which may confound antimicrobial selection. The sensitivity and specificity of the modified carbapenem inactivation method (mCIM) were both 100%, whilst mCIM and EDTA-modified carbapenem inactivation method (eCIM) when used together to differentiate serine from metallo-β-lactamase carriage were both 96%. XpertŽ Carba-R results (in vitro diagnostic test) were consistent with WGS results. Predicting phenotypic carbapenem resistance from WGS data overall showed 100% specificity but only 66.7% sensitivity for Enterobacterales isolates that were non-susceptible to imipenem and meropenem. Conclusions: Multiple β-lactamases in MDR-GNB does not impact DD results, the utility of mCIM/eCIM tests, or Xpert Carba-R results. However, ESBL algorithms produced inconsistent results and predicting carbapenem resistance from WGS data was problematic in such strains

    Beeheal: standardization of laboratory methods for sample processing, nucleic acids extraction and PCR for microsporidia and viruses analysis

    Get PDF
    BEEHEAL is a project designed to determine the phenology and interaction of Nosema ceranae and viruses in four Mediterranean countries: Spain, France, Portugal and Israel, including some territories where Varroa destructor is not present (Azores and Ouessant islands). This will allow us to study and compare the interactions between pathogens in a wide range of hosts, beekeeping and climatic conditions. The honey bee samples collected along the year in the different countries will be analysed for pathogens in three laboratories. This requires a standardization of methods to compare the results in order to assign the effect of every variable in a reliable way. To that end, the participating laboratories have been working together to establish the sampling methodology, the conservation of the samples, the nucleic acids extraction and the PCR analysis. We analyzed the sample processing for nucleic acid extraction on TE buffer (with or without Proteinase K), CTAB buffer or commercial kits (Qiagen). The maceration of bees (either individually or in composite samples) in TE buffer and posterior incubation at 96ºC for 20 minutes showed a good sensibility level and good value for N. ceranae DNA extraction. This method also allowed the conservation of RNA at -80ºC for a month in the TE solution for later RNA extraction. A joint protocol for sample processing, DNA and RNA extraction and PCR analysis has been developed but adjusted to the particular conditions and equipment of each laboratory. The standardization of methods to be implemented by each participating laboratory will avoid the biases on conclusions based on the diverse methods applied.This work has been developed under the BEEHEAL project. BEEHEAL is funded through the ARIMNet2 2016 Call by the following funding agencies: INIA (Spain), MOARD (Israel), ANR (France), and FCT (Portugal). ARIMNet2 (ERA-NET) has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 618127.info:eu-repo/semantics/publishedVersio

    Updating Molecular Diagnostics for Detecting Methicillin- Susceptible and Methicillin-Resistant \u3cem\u3eStaphylococcus aureus \u3c/em\u3eIsolates in Blood Culture Bottles

    Get PDF
    Molecular diagnostic tests can be used to provide rapid identification of staphylococcal species in blood culture bottles to help improve antimicrobial stewardship. However, alterations in the target nucleic acid sequences of the microorganisms or their antimicrobial resistance genes can lead to false-negative results. We determined the whole-genome sequences of 4 blood culture isolates of Staphylococcus aureus and 2 control organisms to understand the genetic basis of genotypephenotype discrepancies when using the Xpert MRSA/SA BC test (in vitro diagnostic medical device [IVD]). Three methicillin-resistant S. aureus (MRSA) isolates each had a different insertion of a genetic element in the staphylococcal cassette chromosome (SCCmec)-orfX junction region that led to a misclassification as methicillin-susceptible S. aureus (MSSA). One strain contained a deletion in spa, which produced a false S. aureus-negative result. A control strain of S. aureus that harbored an SCCmec element but no mecA (an empty cassette) was correctly called MSSA by the Xpert test. The second control contained an SCCM1 insertion. The updated Xpert MRSA/SA BC test successfully detected both spa and SCCmec variants of MRSA and correctly identified empty-cassette strains of S. aureus as MSSA. Among a sample of 252 MSSA isolates from the United States and Europe, 3.9% contained empty SCCmec cassettes, 1.6% carried SCCM1, \u3c1% had spa deletions, and \u3c1% contained SCCmec variants other than those with SCCM1. These data suggest that genetic variations that may interfere with Xpert MRSA/SA BC test results remain rare. Results for all the isolates were correct when tested with the updated assay

    A SNP assay for assessing diversity in immune genes in the honey bee (Apis mellifera L.)

    Get PDF
    With a growing number of parasites and pathogens experiencing large-scale range expansions, monitoring diversity in immune genes of host populations has never been so important because it can inform on the adaptive potential to resist the invaders. Population surveys of immune genes are becoming common in many organisms, yet they are missing in the honey bee (Apis mellifera L.), a key managed pollinator species that has been severely affected by biological invasions. To fill the gap, here we identified single nucleotide polymorphisms (SNPs) in a wide range of honey bee immune genes and developed a medium-density assay targeting a subset of these genes. Using a discovery panel of 123 whole-genomes, representing seven A. mellifera subspecies and three evolutionary lineages, 180 immune genes were scanned for SNPs in exons, introns (< 4 bp from exons), 3’ and 5´UTR, and < 1 kb upstream of the transcription start site. After application of multiple filtering criteria and validation, the final medium-density assay combines 91 quality-proved functional SNPs marking 89 innate immune genes and these can be readily typed using the high-sample-throughput iPLEX MassARRAY system. This medium-density-SNP assay was applied to 156 samples from four countries and the admixture analysis clustered the samples according to their lineage and subspecies, suggesting that honey bee ancestry can be delineated from functional variation. In addition to allowing analysis of immunogenetic variation, this newly-developed SNP assay can be used for inferring genetic structure and admixture in the honey bee.We are deeply indebted to Frank Aguiar, Luís Silva, Edgardo Melo, João Martins, João Melo, Manuel Moura, Manuel Viveiros, and Ricardo Sousa from "Direção Regional da Agricultura e Desenvolvimento Rural dos Açores" (Portugal), and to Laura Garreau, Laurent Maugis, Pascale Sauvage and Jacques Kermagoret, from “Association Conservatoire de l’Abeille Noir Bretonne” (France), for sampling the apiaries in São Miguel, Santa Maria, and Ouessant islands. Genotyping was outsourced to the Epigenetics and Genotyping laboratory, Central Unit for Research in Medicine (UCIM), University of Valencia, Spain. Data analyses were performed using computational resources at the Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança. Ana Rita Lopes is supported by a PhD scholarship (SFRH/BD/143627/2019) from the Foundation for Science and Technology (FCT), Portugal. FCT provided financial support by national funds (FCT/MCTES) to CIMO (UIDB/00690/2020).This research was funded through the projects BEEHAPPY (POCI-01-0145- FEDER-029871, FCT and COMPETE/QREN/EU) and BEEHEAL. BEEHEAL was funded by the ARIMNet2 2016 Call by the following agencies: INIA (Spain), MOARD (Israel), ANR (France) and FCT (Portugal). ARIMNet2 (ERA-NET) received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 618127.info:eu-repo/semantics/publishedVersio

    Sucrose and starch intake contribute to reduced alveolar bone height in a rodent model of naturally occurring periodontitis

    Get PDF
    Funding: This research project was funded in part by the Strategic Research Excellence Initiative 2020 (SREI2020), University of Sydney to JE and the University of Sydney HMR + Implementation Funding Grant to VC, DLC and SS.Peer reviewedPublisher PD

    Molecular profiling of signet ring cell colorectal cancer provides a strong rationale for genomic targeted and immune checkpoint inhibitor therapies

    Get PDF
    We would like to thank all patients whose samples were used in this study. We are also thankful to the Northern Ireland Biobank and Grampian Biorepository for providing us with tissue blocks and patient data; and Dr HG Coleman (Queen’s University Belfast) for her advice on statistical analyses. This work has been carried out with financial support from Cancer Research UK (grant: C11512/A18067), Experimental Cancer Medicine Centre Network (grant: C36697/A15590 from Cancer Research UK and the NI Health and Social Care Research and Development Division), the Sean Crummey Memorial Fund and the Tom Simms Memorial Fund. The Northern Ireland Biobank is funded by HSC Research and Development Division of the Public Health Agency in Northern Ireland and Cancer Research UK through the Belfast CRUK Centre and the Northern Ireland Experimental Cancer Medicine Centre; additional support was received from Friends of the Cancer Centre. The Northern Ireland Molecular Pathology Laboratory which is responsible for creating resources for the Northern Ireland Biobank has received funding from Cancer Research UK, Friends of the Cancer Centre and Sean Crummey Foundation.Peer reviewedPublisher PD

    \u3cem\u3eStreptococcus agalactiae \u3c/em\u3eStrains with Chromosomal Deletions Evade Detection with Molecular Methods

    Get PDF
    Surveillance of circulating microbial populations is critical for monitoring the performance of a molecular diagnostic test. In this study, we characterized 31 isolates of Streptococcus agalactiae (group B Streptococcus [GBS]) from several geographic locations in the United States and Ireland that contain deletions in or adjacent to the region of the chromosome that encodes the hemolysin gene cfb, the region targeted by the Xpert GBS and GBS LB assays. PCR-negative, culture-positive isolates were recognized during verification studies of the Xpert GBS assay in 12 laboratories between 2012 and 2018. Whole-genome sequencing of 15 GBS isolates from 11 laboratories revealed four unique deletions of chromosomal DNA ranging from 181 bp to 49 kb. Prospective surveillance studies demonstrated that the prevalence of GBS isolates containing deletions in the convenience sample wa

    Assay strategies for the discovery and validation of therapeutics targeting <i>Brugia pahangi</i> Hsp90

    Get PDF
    The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target
    • …
    corecore