179 research outputs found

    Projected climate-induced faunal change in the western hemisphere

    Get PDF
    Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can expect even larger range shifts in the coming century. These changes will, in turn, alter ecological communities and the functioning of ecosystems. Despite the seriousness of predicted climate change, the uncertainty in climate-change projections makes it difficult for conservation managers and planners to proactively respond to climate stresses. To address one aspect of this uncertainty, we identified predictions of faunal change for which a high level of consensus was exhibited by different climate models. Specifically, we assessed the potential effects of 30 coupled atmosphere–ocean general circulation model (AOGCM) future-climate simulations on the geographic ranges of 2954 species of birds, mammals, and amphibians in the Western Hemisphere. Eighty percent of the climate projections based on a relatively low greenhouse-gas emissions scenario result in the local loss of at least 10% of the vertebrate fauna over much of North and South America. The largest changes in fauna are predicted for the tundra, Central America, and the Andes Mountains where, assuming no dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal distributions in the future will bear little resemblance to those of today

    Clinical Camel: An Open Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding

    Full text link
    We present Clinical Camel, an open large language model (LLM) explicitly tailored for clinical research. Fine-tuned from LLaMA-2 using QLoRA, Clinical Camel achieves state-of-the-art performance across medical benchmarks among openly available medical LLMs. Leveraging efficient single-GPU training, Clinical Camel surpasses GPT-3.5 in five-shot evaluations on all assessed benchmarks, including 64.3% on the USMLE Sample Exam (compared to 58.5% for GPT-3.5), 77.9% on PubMedQA (compared to 60.2%), 60.7% on MedQA (compared to 53.6%), and 54.2% on MedMCQA (compared to 51.0%). In addition to these benchmarks, Clinical Camel demonstrates its broader capabilities, such as synthesizing plausible clinical notes. This work introduces dialogue-based knowledge encoding, a novel method to synthesize conversational data from dense medical texts. While benchmark results are encouraging, extensive and rigorous human evaluation across diverse clinical scenarios is imperative to ascertain safety before implementation. By openly sharing Clinical Camel, we hope to foster transparent and collaborative research, working towards the safe integration of LLMs within the healthcare domain. Significant challenges concerning reliability, bias, and the potential for outdated knowledge persist. Nonetheless, the transparency provided by an open approach reinforces the scientific rigor essential for future clinical applications.Comment: for model weights, see https://huggingface.co/wanglab

    Relations of Change in Plasma Levels of LDL‐C, Non‐HDL‐C and apoB With Risk Reduction From Statin Therapy: A Meta‐Analysis of Randomized Trials

    Get PDF
    Background: Identifying the best markers to judge the adequacy of lipid‐lowering treatment is increasingly important for coronary heart disease (CHD) prevention given that several novel, potent lipid‐lowering therapies are in development. Reductions in LDL‐C, non‐HDL‐C, or apoB can all be used but which most closely relates to benefit, as defined by the reduction in events on statin treatment, is not established. Methods and Results: We performed a random‐effects frequentist and Bayesian meta‐analysis of 7 placebo‐controlled statin trials in which LDL‐C, non‐HDL‐C, and apoB values were available at baseline and at 1‐year follow‐up. Summary level data for change in LDL‐C, non‐HDL‐C, and apoB were related to the relative risk reduction from statin therapy in each trial. In frequentist meta‐analyses, the mean CHD risk reduction (95% CI) per standard deviation decrease in each marker across these 7 trials were 20.1% (15.6%, 24.3%) for LDL‐C; 20.0% (15.2%, 24.7%) for non‐HDL‐C; and 24.4% (19.2%, 29.2%) for apoB. Compared within each trial, risk reduction per change in apoB averaged 21.6% (12.0%, 31.2%) greater than changes in LDL‐C (P<0.001) and 24.3% (22.4%, 26.2%) greater than changes in non‐HDL‐C (P<0.001). Similarly, in Bayesian meta‐analyses using various prior distributions, Bayes factors (BFs) favored reduction in apoB as more closely related to risk reduction from statins compared with LDL‐C or non‐HDL‐C (BFs ranging from 484 to 2380). Conclusions: Using both a frequentist and Bayesian approach, relative risk reduction across 7 major placebo‐controlled statin trials was more closely related to reductions in apoB than to reductions in either non‐HDL‐C or LDL‐C

    Aerosol and Surface Contamination of SARS-CoV-2 Observed in Quarantine and Isolation Care

    Get PDF
    The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China in late 2019, and its resulting coronavirus disease, COVID-19, was declared a pandemic by the World Health Organization on March 11, 2020. The rapid global spread of COVID-19 represents perhaps the most significant public health emergency in a century. As the pandemic progressed, a continued paucity of evidence on routes of SARS-CoV-2 transmission has resulted in shifting infection prevention and control guidelines between classically-defined airborne and droplet precautions. During the initial isolation of 13 individuals with COVID-19 at the University of Nebraska Medical Center, we collected air and surface samples to examine viral shedding from isolated individuals. We detected viral contamination among all samples, supporting the use of airborne isolation precautions when caring for COVID-19 patients

    The causal exposure model of vascular disease

    Get PDF
    Primary prevention of cardiovascular disease is governed at present by the risk factor model for cardiovascular events, a model which is widely accepted by physicians and professional associations, but which has important limitations: most critically, that effective treatment to reduce arterial damage is often delayed until the age at which cardiovascular events become common. This delay means that many of the early victims of vascular disease will not be identified in time. This delay also allows atherosclerosis to develop and progress unchecked within the arterial tree with the result that the absolute effectiveness of preventive therapy is limited by the time it is eventually initiated. The causal exposure model of vascular disease is an alternative to the risk factor model for cardiovascular events. Whereas the risk factor model aims to identify and treat those at markedly increased risk of vascular events within the next decade, the causal exposure model of vascular disease aims to prevent events by treating the causes of the disease when they are identified. In the risk factor model, age is an independent non-modifiable risk factor and the predictive power of age far outweighs that of the other risk factors. In the causal exposure model, age is the duration of time the arterial wall is exposed to the causes of atherosclerosis: apoB (apolipoprotein B) lipoproteins, hypertension, diabetes and smoking. Preventing the development of advanced atherosclerotic lesions by treating the causes of vascular disease is the simplest, surest and most effective way to prevent clinical events

    The effectiveness of modern cardiac rehabilitation : A systematic review of recent observational studies in non-attenders versus attenders

    Get PDF
    BACKGROUND: The beneficial effects of cardiac rehabilitation (CR) have been challenged in recent years and there is now a need to investigate whether current CR programmes, delivered in the context of modern cardiology, still benefit patients. METHODS: A systematic review of non-randomised controlled studies was conducted. Electronic searches of Medline, Embase, CINAHL, science citation index (web of science), CIRRIE and Open Grey were undertaken. Non-randomised studies investigating the effects of CR were included when recruitment occurred from the year 2000 onwards in accordance with significant CR guidance changes from the late 1990's. Adult patients diagnosed with acute myocardial infarction (AMI) were included. Non-English articles were considered. Two reviewers independently screened articles according to pre-defined selection criteria as reported in the PROSPERO database (CRD42015024021). RESULTS: Out of 2,656 articles, 8 studies involving 9,836 AMI patients were included. Studies were conducted in 6 countries. CR was found to reduce the risk of all-cause and cardiac-related mortality and improve Health-Related Quality of Life (HRQOL) significantly in at least one domain. The benefits of CR in terms of recurrent MI were inconsistent and no significant effects were found regarding re-vascularisation or re-hospitalisation following AMI. CONCLUSION: Recent observational evidence draws different conclusions to the most current reviews of trial data with respect to total mortality and re-hospitalisation, questioning the representativeness of historic data in the modern cardiological era. Future work should seek to clarify which patient and service level factors determine the likelihood of achieving improved all-cause and cardiac mortality and reduced hospital re-admissions
    • 

    corecore