21,862 research outputs found

    Chirplet approximation of band-limited, real signals made easy

    Full text link
    In this paper we present algorithms for approximating real band-limited signals by multiple Gaussian Chirps. These algorithms do not rely on matching pursuit ideas. They are hierarchial and, at each stage, the number of terms in a given approximation depends only on the number of positive-valued maxima and negative-valued minima of a signed amplitude function characterizing part of the signal. Like the algorithms used in \cite{gre2} and unlike previous methods, our chirplet approximations require neither a complete dictionary of chirps nor complicated multi-dimensional searches to obtain suitable choices of chirp parameters

    Experimental investigation of planar strained methane-air and ethylene-air flames

    Get PDF
    The extinction of planar strained methane-air flames in the stagnation-point flow is studied. A thermal analysis has been conducted in order to build a new copper stagnation plate which can be heated up to 1000K, and allows investigation of downstream heat loss as extinction driving mechanism. Since premixed stagnation flames are mostly sensitive to the composition of the mixture, axial velocity and CH radical profiles are simultaneously measured for different equivalence ratios, using respectively Particle Streak Velocimetry (PSV) and Planar Laser Induced Fluorescence (PLIF). These are compared to simulations using CANTERA stagnation flow code with a multicomponent molecular transport model, with the following chemical kinetics mechanisms: GRI-MECH 3.0, the C3-Davis, San-Diego 200308 and San-Diego 200503 mechanisms. In methane-air flames, simulations accurately predict the velocity and CH profiles from Phi=0.8 to Phi=1.2, but the flame speed turns out to be overpredicted at Phi=0.7 by all mechanisms except the C3-Davis mechanism (see Bergthorson et al. 2005a). The experiment at Phi=1.3 would need to be reconducted. Also, measured relative concentrations of CH are compared to numerical predictions using each of the four mechanisms cited above. Composition variations impact on ethylene-air flames was also investigated due to a peculiar jump in the overprediction of flame velocities from Phi=1.6 to Phi=1.8 (Bergthorson 2005). This peculiar feature was found to be repeatable, but the cause remains unclear. Methane-air laminar flame speeds Su0 were computed using CANTERA freely propagating flame code for the following chemical kinetics mechanisms: GRI-MECH 3.0, the C3-Davis mechanism, the San Diego 200308, 200503, and 200506 mechanisms, for variable pressures (1,2,5,10,20 atm) and equivalence ratios (0.6-1.4). Even for methane, whose chemistry is one of the best understood, the scatter between the different mechanisms is significant. Both composition and pressure were found to affect Su0 substantially, although composition variations seem to excite the differences in the predictions among the different mechanisms the most

    Polarized Gamma-ray Emission from the Galactic Black Hole Cygnus X-1

    Get PDF
    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-1 with the INTEGRAL/IBIS telescope. Spectral modeling of the data reveals two emission mechanisms: The 250-400 keV data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.Comment: 11 pages, 3 figures, to be published in Science in April 22nd 2011, available on Science Express Web site (March 24th edition

    On the semiclassical limit of 4d spin foam models

    Full text link
    We study the semiclassical properties of the Riemannian spin foam models with Immirzi parameter that are constructed via coherent states. We show that in the semiclassical limit the quantum spin foam amplitudes of an arbitrary triangulation are exponentially suppressed, if the face spins do not correspond to a discrete geometry. When they do arise from a geometry, the amplitudes reduce to the exponential of i times the Regge action. Remarkably, the dependence on the Immirzi parameter disappears in this limit.Comment: 32 pages, 5 figure
    corecore