24 research outputs found

    Additive manufacturing of Ni-Mn-Sn shape memory Heusler alloy -- Microstructure and magnetic properties from powder to printed parts

    Full text link
    Ni-Mn-based Heusler alloys like Ni-Mn-Sn show an elastocaloric as well as magnetocaloric effect during the magneto-structural phase transition, making this material interesting for solid-state cooling application. Material processing by additive manufacturing can overcome difficulties related to machinability of the alloys, caused by their intrinsic brittleness. Since the magnetic properties and transition temperature are highly sensitive to the chemical composition, it is essential to understand and monitoring these properties over the entire processing chain. In the present work the microstructural and magnetic properties from gas-atomized powder to post-processed Ni-Mn-Sn alloy are investigated. Direct energy deposition was used for processing, promoting the evolution of a polycrystalline microstructure being characterized by elongated grains along the building direction. A complete and sharp martensitic transformation can be achieved after applying a subsequent heat treatment at 1173 K for 24 h. The Mn-evaporation of 1.3 at. % and the formation of Mn-oxide during DED-processing lead to an increase of the transition temperature of 45 K and a decrease of magnetization, clearly pointing at the necessity of controlling the composition, oxygen partial pressure and magnetic properties over the entire processing chain

    Effects of aging on the stress-induced martensitic transformation and cyclic superelastic properties in Co-Ni-Ga shape memory alloy single crystals under compression

    Get PDF
    Co-Ni-Ga shape memory alloys attracted scientific attention as promising candidate materials for damping applications at elevated temperatures, owing to excellent superelastic properties featuring a fully reversible stress-strain response up to temperatures as high as 500 °C. In the present work, the effect of aging treatments conducted in a wide range of aging temperatures and times, i.e. at 300–400 °C for 0.25–8.5 h, was investigated. It is shown that critical features of the martensitic transformation are strongly affected by the heat treatments. In particular, the formation of densely dispersed γ’-nanoparticles has a strong influence on the martensite variant selection and the morphology of martensite during stress-induced martensitic transformation. Relatively large, elongated particles promote irreversibility. In contrast, small spheroidal particles are associated with excellent functional stability during cyclic compression loading of 〈001〉-oriented single crystals. In addition to mechanical experiments, a detailed microstructural analysis was performed using in situ optical microscopy and neutron diffraction. Fundamental differences in microstructural evolution between various material states are documented and the relations between thermal treatment, microstructure and functional properties are explored and rationalized

    On the impact of nanometric γ’ precipitates on the tensile deformation of superelastic Co49Ni21Ga30

    Get PDF
    Results are presented reporting on the martensite domain variant selection and stress-induced martensite morphology in [001]-oriented superelastic Co49Ni21Ga30 shape memory alloy (SMA) single crystals under tensile load. In situ neutron diffraction, as well as in situ optical- and confocal laser scanning microscopy were conducted focusing on three differently treated samples, i.e. in the as-grown, solution-annealed and aged condition. An aging treatment performed at 350 °C promotes the precipitation of nanoprecipitates. These second phase precipitates contribute to an increase of the number of habit plane interfaces, while reducing lamellar martensite plate thickness compared to the as-grown and solution-annealed (precipitate free) samples. During tensile loading, all samples show a stress-induced formation of martensite, characterized by one single domain variant (“detwinned”) and one set of parallel habit planes in a shear band. The results clearly show that γ’ nanoprecipitates do not necessarily promote multi-variant interaction during tensile loading. Thus, reduced recoverability in Co-Ni-Ga SMAs upon aging cannot be solely attributed to this kind of interaction as has been proposed in literature so far

    On the Impact of Additive Manufacturing Processes on the Microstructure and Magnetic Properties of Co–Ni–Ga Shape Memory Heusler Alloys

    Get PDF
    Microstructure design allows to prevent intergranular cracking and premature failure in Co–Ni–Ga shape memory alloys. Favorable grain boundary configurations are established using additive manufacturing techniques, namely, direct energy deposition (DED) and laser powder bed fusion (L‐PBF). L‐PBF allows to establish a columnar grain structure. In the Co–Ni–Ga alloy processed by DED, a microstructure with strong ⟨001⟩ texture is obtained. In line with optimized microstructures, the general transformation behavior is essential for performance. Transition parameters such as transition temperature and thermal hysteresis depend on chemical composition, homogeneity, and presence of precipitates. However, these parameters are highly dependent on the processing method used. Herein, the first‐order magnetostructural transformation and magnetization properties of Co–Ni–Ga processed by DED and L‐PBF are compared with single‐crystalline and as‐cast material. In the alloy processed by L‐PBF, Ga evaporation and extensive formation of the ferromagnetic Co‐rich γ'‐phase are observed, promoting a very wide transformation range and large thermal hysteresis. In comparison, following DED, the material is characterized by minor chemical inhomogeneity and transition and magnetization behavior being similar to that of a single crystal. This clearly renders DED‐processed Co–Ni–Ga to become a promising candidate material for future shape memory applications

    Gezieltes Design von nanoskaligen Ausscheidungsteilchen, chemischer Ordnung und Korngrenzen

    No full text
    Zugleich: Dissertation, Universität Kassel, 202

    Laser beam powder bed fusion of novel biomedical titanium/niobium/tantalum alloys: Powder synthesis, microstructure evolution and mechanical properties

    No full text
    The synthesis of spherical titanium/niobium/tantalum (TNT) alloy powders, namely Ti-20Nb-6Ta, Ti-27Nb-6Ta, Ti-35Nb-6Ta, and Ti-22Nb-19Ta (in wt-%) by electrode induction melting gas atomization is reported. The powder materials are characterized in detail using X-ray diffraction and scanning electron microscopy. Their processability via laser beam powder bed fusion (PBF-LB/M) is proven, and microstructure as well as mechanical properties of the additively manufactured specimens are assessed. All powders feature a dendrite-type microstructure with Nb/Ta-rich dendritic and Ti-rich inter-dendritic phases. Crystal structures of the powders are strongly composition-dependent. Nb- and Ta-rich Ti-35Nb-6Ta and Ti-22Nb-19Ta feature a body-centered cubic lattice, whereas Ti-rich Ti-20Nb-6Ta and Ti-27Nb-6Ta powders are characterized by multi-phase microstructures, consisting of non-equilibrium martensitic phases. Processing by PBF-LB/M causes significant changes in their microstructures: the dendrite-type morphologies vanish, and the formation of microstructures with a homogeneous element distribution can be observed in all additively manufactured parts. Ultimate tensile strength (UTS) as well as elongation at fracture are assessed by tensile testing. UTS values are found to be in a range from 651 MPa (Ti-35Nb-6Ta) to 802 MPa (Ti-20Nb-6Ta); strain-to-failure is between 21.3 % (Ti-35Nb-6Ta) and 31.7 % (Ti-22Nb-19Ta). Ductile fracture behavior is seen for all TNT alloys investigated

    On the Effect of Quenching on Postweld Heat Treatment of Friction-Stir-Welded Aluminum 7075 Alloy

    No full text
    This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections
    corecore