10 research outputs found

    Low-Protein Diet during Lactation and Maternal Metabolism in Rats

    Get PDF
    Some metabolic alterations were evaluated in Wistar rats which received control or low-protein (17%; 6%) diets, from the pregnancy until the end of lactation: control non-lactating (CNL), lactating (CL), low-protein non-lactating (LPNL) and lactating (LPL) groups. Despite the increased food intake by LPL dams, both LP groups reduced protein intake and final body mass was lower in LPL. Higher serum glucose occurred in both LP groups. Lactation induced lower insulin and glucagon levels, but these were reduced by LP diet. Prolactin levels rose in lactating, but were impaired in LPL, followed by losses of mammary gland (MAG) mass and, a fall in serum leptin in lactating dams. Lipid content also reduced in MAG and gonadal white adipose tissue of lactating and, in LPL, contributed to a decreased daily milk production, and consequent impairment of body mass gain by LPL pups. Liver mass, lipid content and ATP-citrate enzyme activity were increased by lactation, but malic enzyme and lipid: glycogen ratio elevated only in LPL. Conclusion. LP diet reduced the development of MAG and prolactin secretion which compromised milk production and pups growth. Moreover, this diet enhanced the store of lipid to glycogen ratio and suggests a higher risk of fatty liver development

    Effect of nutritional recovery with soybean flour diet on body composition, energy balance and serum leptin concentration in adult rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malnutrition in early life is associated with obesity in adulthood and soybean products may have a beneficial effect on its prevention and treatment. This study evaluated body composition, serum leptin and energy balance in adult rats subjected to protein restriction during the intrauterine stage and lactation and recovering on a soybean flour diet.</p> <p>Methods</p> <p>Five groups of the Wistar strain of albino rats were used: CC, offspring born to and suckled by mothers fed a control diet and fed the same diet after weaning; CS, offspring born to and suckled by mothers fed a control diet and fed a soybean diet with 17% protein after weaning; LL, offspring of mothers fed a low protein diet and fed the same diet after weaning; LC, offspring of mothers fed a low protein diet, but fed a control diet after weaning; LS, offspring of mothers fed a low protein diet, but fed a soybean diet with 17% protein after weaning. Food intake, body, perirenal and retroperitoneal adipose tissue were measured in grams. Leptin was quantified using the Enzyme Linked Immuno Sorbent Assay (ELISA) and insulin by radioimmunoassay (RIA). Carcass composition was determined by chemical methods and energy expenditure was calculated by the difference between energy intake and carcass energy gain. Data were tested by analysis of variance (ANOVA).</p> <p>Results</p> <p>The LC and LS groups had higher energetic intake concerning body weight, lower energy expenditure, proportion of fat carcass and fat pads than CC and CS groups. The LS group showed reduced body weight gain and lower energy efficiency, which was reflected in less energy gain as protein and the proportion of carcass protein, and lower energy gain as lipid than in the LC groups, although both groups had eaten the same amount of diet and showed equal energy expenditure. Serum leptin did not differ among groups and was unrelated to food or energy intake and energy expenditure. Serum insulin was higher in the LS than in the LC group.</p> <p>Conclusion</p> <p>Protein restriction during intrauterine life and lactation periods did not provoke obesity in adulthood. Nutritional recovery with soybean diet decreased the body weight at the expense of lower energy efficiency with repercussion on lean mass.</p

    Protein deficiency and nutritional recovery modulate insulin secretion and the early steps of insulin action in rats

    No full text
    Maternal malnutrition was shown to affect early growth and leads to permanent alterations in insulin secretion and sensitivity of offspring. In addition, epidemiological studies showed an association between low birth weight and glucose intolerance in adult life. To understand these interactions better, we investigated the insulin secretion by isolated islets and the early events related to insulin action in the hind-limb muscle of adult rats fed a diet of 17% protein (control) or 6% protein [low (LP) protein] during fetal life, suckling and after weaning, and in rats receiving 6% protein during fetal life and suckling followed by a 17% protein diet after weaning (recovered). The basal and maximal insulin secretion by islets from rats fed LP diet and the basal release by islets from recovered rats were significantly lower than that of control rats. The dose-response curves to glucose of islets from LP and recovered groups were shifted to the right compared to control islets, with the half-maximal response (EC 50) occurring at 16.9 ± 1.3, 12.4 ± 0.5 and 8.4 ± 0.1 mmol/L, respectively. The levels of insulin receptor, as well as insulin receptor substrate-1 and phosphorylation and the association between insulin receptor substrate-1 and phosphatidylinositol 3-kinase were greater in rats fed a LP diet than in control rats. In recovered rats, these variables were not significantly different from those of the other two groups. These results suggest that glucose homeostasis is maintained in LP and recovered rats by an increased sensitivity to insulin as a result of alterations in the early steps of the insulin signal transduction pathway

    Expression Of Pdx-1 Is Reduced In Pancreatic Islets From Pups Of Rat Dams Fed A Low Protein Diet During Gestation And Lactation.

    No full text
    Intrauterine and early postnatal malnutrition has profound consequences on fetal and postnatal development in both humans and animals. In addition, low birth weight has been reported to be associated with impaired insulin secretion, insulin resistance and diminished area of pancreatic islets. Because the transcription factor pancreatic and duodenal homeobox 1 (PDX-1) is important for the maintenance of B-cell physiology, PDX-1 expression and islet area were assessed in neonatal rats of dams fed low (6%) or normal (17%) protein diets during pregnancy. PDX-1 protein and mRNA levels, as well as insulin secretion and islet area, were measured after 28 d of life in normal, low protein and recovered rats whose dams consumed a normal protein diet after delivery. Insulin secretion by isolated islets in response to 2.8 and 16.7 mmol glucose/L was reduced in 28-d-old low protein rats compared with the control (P < 0.05). At birth and after 28 d of life, the islet area and PDX-1 protein expression were also reduced (P < 0.05). In contrast, PDX-1 mRNA levels in islets from 28-d-old low protein rats were not different from control rats. PDX-1 protein expression in pancreatic islets, the area of islets and insulin secretion were restored in recovered rats, whereas PDX-1 mRNA levels were higher than in normal rats (P < 0.05). These results suggest a link among diminished PDX-1 protein expression, a reduction in islet area and impaired insulin secretion in low protein rats. The reintroduction of a normal diet early in life restored islet area and cell physiology.1323030-

    Short-term low-protein diet during pregnancy alters islet area and protein content of phosphatidylinositol 3-kinase pathway in rats

    No full text
    The phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways mediate &#946; cell growth, proliferation, survival and death. We investigated whether protein restriction during pregnancy alters islet morphometry or the expression and phosphorylation of several proteins involved in the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. As controls, adult pregnant and non-pregnant rats were fed a normal-protein diet (17%). Pregnant and non-pregnant rats in the experimental groups were fed a low-protein diet (6%) for 15 days. Low protein diet during pregnancy increased serum prolactin level, reduced serum corticosterone concentration and the expression of both protein kinase B/AKT1 (AKT1) and p70 ribosomal protein S6 kinase (p70S6K), as well as the islets area, but did not alter the insulin content of pancreatic islets. Pregnancy increased the expression of the Src homology/collagen (SHC) protein and the extracellular signal-regulated kinases 1/2 (ERK1/2) independent of diet. ERK1/2 phosphorylation (pERK1/2) was similar in islets from pregnant and non-pregnant rats fed a low-protein diet, and was higher in islets from pregnant rats than in islets from non-pregnant rats fed a normal-protein diet. Thus, a short-term, low-protein diet during pregnancy was sufficient to reduce the levels of proteins in the phosphatidylinositol 3-kinase pathway and affect islet morphometry
    corecore