856 research outputs found
Simon-Task Reveals Balanced Visuomotor Control in Experienced Video-Game Players
Both short and long-term video-game play may result in superior performance on visual and attentional tasks. To further these findings, we compared the performance of experienced male video-game players (VGPs) and non-VGPs on a Simon-task. Experienced-VGPs began playing before the age of 10, had a minimum of 8 years of experience and a minimum play time of over 20 h per week over the past 6 months. Our results reveal a significantly reduced Simon-effect in experienced-VGPs relative to non-VGPs. However, this was true only for the right-responses, which typically show a greater Simon-effect than left-responses. In addition, experienced-VGPs demonstrated significantly quicker reaction times and more balanced left-versus-right-hand performance than non-VGPs. Our results suggest that experienced-VGPs can resolve response-selection conflicts more rapidly for right-responses than non-VGPs, and this may in part be underpinned by improved bimanual motor control
Multiwavelength transit observations of the candidate disintegrating planetesimals orbiting WD 1145+017
We present multiwavelength, ground-based follow-up photometry of the white dwarf WD 1145+017, which has recently been suggested to be orbited by up to six or more short-period, low-mass, disintegrating planetesimals. We detect nine significant dips in flux of between 10% and 30% of the stellar flux in our ~32 hr of photometry, suggesting that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the asymmetric transits that we observe, we confirm that the transit egress is usually longer than the ingress, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals are unclear, but at least one object, and likely more, have orbital periods of ~4.5 hr. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high-precision photometry also displays low-amplitude variations, suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. We compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions, the radius of single-size particles in the cometary tails streaming behind the planetesimals must be ~0.15 μm or larger, or ~0.06 μm or smaller, with 2σ confidence
Two Small Planets Transiting HD 3167
We report the discovery of two super-Earth-sized planets transiting the
bright (V = 8.94, K = 7.07) nearby late G-dwarf HD 3167, using data collected
by the K2 mission. The inner planet, HD 3167 b, has a radius of 1.6 R_e and an
ultra-short orbital period of only 0.96 days. The outer planet, HD 3167 c, has
a radius of 2.9 R_e and orbits its host star every 29.85 days. At a distance of
just 45.8 +/- 2.2 pc, HD 3167 is one of the closest and brightest stars hosting
multiple transiting planets, making HD 3167 b and c well suited for follow-up
observations. The star is chromospherically inactive with low rotational
line-broadening, ideal for radial velocity observations to measure the planets'
masses. The outer planet is large enough that it likely has a thick gaseous
envelope which could be studied via transmission spectroscopy. Planets
transiting bright, nearby stars like HD 3167 are valuable objects to study
leading up to the launch of the James Webb Space Telescope.Comment: Accepted by ApJL. 6 pages, 1 figure, 2 table
The Mass of the White Dwarf Companion in the Self-Lensing Binary KOI-3278: Einstein vs. Newton
KOI-3278 is a self-lensing stellar binary consisting of a white-dwarf
secondary orbiting a Sun-like primary star. Kruse and Agol (2014) noticed small
periodic brightenings every 88.18 days in the Kepler photometry and interpreted
these as the result of microlensing by a white dwarf with about 63 of the
mass of the Sun. We obtained two sets of spectra for the primary that allowed
us to derive three sets of spectroscopic estimates for its effective
temperature, surface gravity, and metallicity for the first time. We used these
values to update the Kruse and Agol (2014) Einsteinian microlensing model,
resulting in a revised mass for the white dwarf of . The spectra also allowed us to determine radial velocities and
derive orbital solutions, with good agreement between the two independent data
sets. An independent Newtonian dynamical MCMC model of the combined velocities
yielded a mass for the white dwarf of . The nominal uncertainty for the Newtonian mass is about four times
better than for the Einsteinian, vs. and the difference
between the two mass determinations is . We then present a joint
Einsteinian microlensing and Newtonian radial velocity model for KOI-3278,
which yielded a mass for the white dwarf of . This joint model does not rely on any white dwarf evolutionary
models or assumptions on the white dwarf mass-radius relation. We discuss the
benefits of a joint model of self-lensing binaries, and how future studies of
these systems can provide insight into the mass-radius relation of white
dwarfs.Comment: ApJ Accepted; 22 Pages, 8 Figures, 6 Tables and 4 Supplementary
Table
The Metallicity Distribution and Hot Jupiter Rate of the Kepler Field: Hectochelle High-Resolution Spectroscopy for 776 Kepler Target Stars
The occurrence rate of hot Jupiters from the Kepler transit survey is roughly half that of radial velocity surveys targeting solar neighborhood stars. One hypothesis to explain this difference is that the two surveys target stars with different stellar metallicity distributions. To test this hypothesis, we measure the metallicity distribution of the Kepler targets using the Hectochelle multi-fiber, high-resolution spectrograph. Limiting our spectroscopic analysis to 610 dwarf stars in our sample with log g > 3.5, we measure a metallicity distribution characterized by a mean of [M/H][subscript mean] = -0.045±0.009, in agreement with previous studies of the Kepler field target stars. In comparison, the metallicity distribution of the California Planet Search radial velocity sample has a mean of [M/H][subscript CPS,mean] = -0.005±0.006, and the samples come from different parent populations according to a Kolmogorov–Smirnov test. We refit the exponential relation between the fraction of stars hosting a close-in giant planet and the host star metallicity using a sample of dwarf stars from the California Planet Search with updated metallicities. The best-fit relation tells us that the difference in metallicity between the two samples is insufficient to explain the discrepant hot Jupiter occurrence rates; the metallicity difference would need to be sime0.2–0.3 dex for perfect agreement. We also show that (sub)giant contamination in the Kepler sample cannot reconcile the two occurrence calculations. We conclude that other factors, such as binary contamination and imperfect stellar properties, must also be at play
Multiwavelength Transit Observations of the Candidate Disintegrating Planetesimals Orbiting WD 1145+017
We present multiwavelength, multi-telescope, ground-based follow-up
photometry of the white dwarf WD 1145+017, that has recently been suggested to
be orbited by up to six or more, short-period, low-mass, disintegrating
planetesimals. We detect 9 significant dips in flux of between 10% and 30% of
the stellar flux from our ground-based photometry. We observe transits deeper
than 10% on average every ~3.6 hr in our photometry. This suggests that WD
1145+017 is indeed being orbited by multiple, short-period objects. Through
fits to the multiple asymmetric transits that we observe, we confirm that the
transit egress timescale is usually longer than the ingress timescale, and that
the transit duration is longer than expected for a solid body at these short
periods, all suggesting that these objects have cometary tails streaming behind
them. The precise orbital periods of the planetesimals in this system are
unclear from the transit-times, but at least one object, and likely more, have
orbital periods of ~4.5 hours. We are otherwise unable to confirm the specific
periods that have been reported, bringing into question the long-term stability
of these periods. Our high precision photometry also displays low amplitude
variations suggesting that dusty material is consistently passing in front of
the white dwarf, either from discarded material from these disintegrating
planetesimals or from the detected dusty debris disk. For the significant
transits we observe, we compare the transit depths in the V- and R-bands of our
multiwavelength photometry, and find no significant difference; therefore, for
likely compositions the radius of single-size particles in the cometary tails
streaming behind the planetesimals in this system must be ~0.15 microns or
larger, or ~0.06 microns or smaller, with 2-sigma confidence.Comment: 16 pages, 12 figures, submitted to ApJ on October 8th, 201
Qatar-2: A K dwarf orbited by a transiting hot Jupiter and a more massive companion in an outer orbit
We report the discovery and initial characterization of Qatar-2b, a hot
Jupiter transiting a V = 13.3 mag K dwarf in a circular orbit with a short
period, P_ b = 1.34 days. The mass and radius of Qatar-2b are M_p = 2.49 M_j
and R_p = 1.14 R_j, respectively. Radial-velocity monitoring of Qatar-2 over a
span of 153 days revealed the presence of a second companion in an outer orbit.
The Systemic Console yielded plausible orbits for the outer companion, with
periods on the order of a year and a companion mass of at least several M_j.
Thus Qatar-2 joins the short but growing list of systems with a transiting hot
Jupiter and an outer companion with a much longer period. This system
architecture is in sharp contrast to that found by Kepler for multi-transiting
systems, which are dominated by objects smaller than Neptune, usually with
tightly spaced orbits that must be nearly coplanar
Revised Stellar Properties of Kepler Targets for the Q1-17 (DR25) Transit Detection Run
The determination of exoplanet properties and occurrence rates using Kepler
data critically depends on our knowledge of the fundamental properties (such as
temperature, radius and mass) of the observed stars. We present revised stellar
properties for 197,096 Kepler targets observed between Quarters 1-17 (Q1-17),
which were used for the final transiting planet search run by the Kepler
Mission (Data Release 25, DR25). Similar to the Q1--16 catalog by Huber et al.
the classifications are based on conditioning published atmospheric parameters
on a grid of Dartmouth isochrones, with significant improvements in the adopted
methodology and over 29,000 new sources for temperatures, surface gravities or
metallicities. In addition to fundamental stellar properties the new catalog
also includes distances and extinctions, and we provide posterior samples for
each stellar parameter of each star. Typical uncertainties are ~27% in radius,
~17% in mass, and ~51% in density, which is somewhat smaller than previous
catalogs due to the larger number of improved logg constraints and the
inclusion of isochrone weighting when deriving stellar posterior distributions.
On average, the catalog includes a significantly larger number of evolved
solar-type stars, with an increase of 43.5% in the number of subgiants. We
discuss the overall changes of radii and masses of Kepler targets as a function
of spectral type, with particular focus on exoplanet host stars.Comment: 19 pages, 13 figures. ApJS in pres
- …