533 research outputs found

    Transportation economics for Arctic petroleum resources.

    Get PDF
    Massachusetts Institute of Technology. Dept. of Naval Architecture and Marine Engineering. Thesis. 1970. M.S.MICROFICHE COPY ALSO AVAILABLE IN BARKER ENGINEERING LIBRARY.Bibliography: leaf 52.M.S

    Evaluational adjectives

    Get PDF
    This paper demarcates a theoretically interesting class of "evaluational adjectives." This class includes predicates expressing various kinds of normative and epistemic evaluation, such as predicates of personal taste, aesthetic adjectives, moral adjectives, and epistemic adjectives, among others. Evaluational adjectives are distinguished, empirically, in exhibiting phenomena such as discourse-oriented use, felicitous embedding under the attitude verb `find', and sorites-susceptibility in the comparative form. A unified degree-based semantics is developed: What distinguishes evaluational adjectives, semantically, is that they denote context-dependent measure functions ("evaluational perspectives")—context-dependent mappings to degrees of taste, beauty, probability, etc., depending on the adjective. This perspective-sensitivity characterizing the class of evaluational adjectives cannot be assimilated to vagueness, sensitivity to an experiencer argument, or multidimensionality; and it cannot be demarcated in terms of pretheoretic notions of subjectivity, common in the literature. I propose that certain diagnostics for "subjective" expressions be analyzed instead in terms of a precisely specified kind of discourse-oriented use of context-sensitive language. I close by applying the account to `find x PRED' ascriptions

    Intrinsic Terahertz Plasmons and Magnetoplasmons in Large Scale Monolayer Graphene

    Get PDF
    We show that in graphene epitaxially grown on SiC the Drude absorption is transformed into a strong terahertz plasmonic peak due to natural nanoscale inhomogeneities, such as substrate terraces and wrinkles. The excitation of the plasmon modifies dramatically the magneto-optical response and in particular the Faraday rotation. This makes graphene a unique playground for plasmon-controlled magneto-optical phenomena thanks to a cyclotron mass 2 orders of magnitude smaller than in conventional plasmonic materials such as noble metals.Comment: to appear in Nano Letter

    Atomic-scale confinement of optical fields

    Full text link
    In the presence of matter there is no fundamental limit preventing confinement of visible light even down to atomic scales. Achieving such confinement and the corresponding intensity enhancement inevitably requires simultaneous control over atomic-scale details of material structures and over the optical modes that such structures support. By means of self-assembly we have obtained side-by-side aligned gold nanorod dimers with robust atomically-defined gaps reaching below 0.5 nm. The existence of atomically-confined light fields in these gaps is demonstrated by observing extreme Coulomb splitting of corresponding symmetric and anti-symmetric dimer eigenmodes of more than 800 meV in white-light scattering experiments. Our results open new perspectives for atomically-resolved spectroscopic imaging, deeply nonlinear optics, ultra-sensing, cavity optomechanics as well as for the realization of novel quantum-optical devices

    Polarization transfer in wide-angle Compton scattering and single-pion photoproduction from the proton

    Get PDF
    Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of θpcm=70°. The longitudinal transfer KLL, measured to be 0.645±0.059±0.048, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is ∼3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude

    Mode imaging and selection in strongly coupled nanoantennas

    Full text link
    The number of eigenmodes in plasmonic nanostructures increases with complexity due to mode hybridization, raising the need for efficient mode characterization and selection. Here we experimentally demonstrate direct imaging and selective excitation of the bonding and antibonding plasmon mode in symmetric dipole nanoantennas using confocal two-photon photoluminescence mapping. Excitation of a high-quality-factor antibonding resonance manifests itself as a two-lobed pattern instead of the single spot observed for the broad bonding resonance, in accordance with numerical simulations. The two-lobed pattern is observed due to the fact that excitation of the antibonding mode is forbidden for symmetric excitation at the feedgap, while concomitantly the mode energy splitting is large enough to suppress excitation of the bonding mode. The controlled excitation of modes in strongly coupled plasmonic nanostructures is mandatory for efficient sensors, in coherent control as well as for implementing well-defined functionalities in complex plasmonic devices.Comment: 11 pages, 5 figures, 1 supplementary informatio
    • …
    corecore