9 research outputs found

    Improved VAS regression soundings of mesoscale temperature structure observed during the 1982 atmospheric variability experiment

    Get PDF
    An Atmospheric Variability Experiment (AVE) was conducted over the central U.S. in the spring of 1982, collecting radiosonde date to verify mesoscale soundings from the VISSR Atmospheric Sounder (VAS) on the GOES satellite. Previously published VAS/AVE comparisons for the 6 March 1982 case found that the satellite retrievals scarcely detected a low level temperature inversion or a mid-tropospheric cold pool over a special mesoscale radiosonde verification network in north central Texas. The previously published regression and physical retrieval algorithms did not fully utilize VAS' sensitivity to important subsynoptic thermal features. Therefore, the 6 March 1982 case was reprocessed adding two enhancements to the VAS regression retrieval algorithm: (1) the regression matrix was determined using AVE profile data obtained in the region at asynoptic times, and (2) more optimistic signal-to-noise statistical conditioning factors were applied to the VAS temperature sounding channels. The new VAS soundings resolve more of the low level temperature inversion and mid-level cold pool. Most of the improvements stems from the utilization of asynoptic radiosonde observations at NWS sites. This case suggests that VAS regression soundings may require a ground-based asynoptic profiler network to bridge the gap between the synoptic radiosonde network and the high resolution geosynchronous satellite observations during the day

    Atlas of TOMS ozone data collected during the Genesis of Atlantic Lows Experiment (GALE), 1986

    Get PDF
    Data from the TOMS (Total Ozone Mapping Spectrometer) instrument aboard the Nimbus-7 satellite were collected daily in real time during the GALE (Genesis of Atlantic Lows Experiment) from January 15 through March 15, l986. The TOMS ozone data values were processed into GEMPAK format and transferred from the Goddard Space Flight Center to GALE operations in Raleigh-Durham, NC, in as little as three hours for use, in part, to direct aircraft research flights recording in situ measurements of ozone and water vapor in areas of interest. Once in GEMPAK format, the ozone values were processed into gridded form using the Barnes objective analysis scheme and contour plots of the ozone created. This atlas provides objectively analyzed contour plots of the ozone for each of the sixty days of GALE as well as four-panel presentations of the ozone analysis combined on the basis of GALE Intensive Observing Periods (IOP's)

    The 1988 Antarctic ozone monitoring Nimbus-7 TOMS data atlas

    Get PDF
    Because of the great environmental significance of ozone and to support continuing research at McMurdo, Syowa, and other Southern Hemisphere stations, the development of the 1988 ozone hole was monitored using data from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) instrument, produced in near-real-time. This Atlas provides a complete set of daily polar orthographic projections of the TOMS total ozone measurements over the Southern Hemisphere for the period August 1 through November 17, 1988. Although total ozone in mini-holes briefly dropped below 150 DU in late August, the main ozone hole is seen to be much less pronounced than in 1987. Minimum values, observed in late September and early October 1988, were seldom less than 175 DU. Compared with the same period in 1987, when a pronounced ozone hole whose minimum value of 109 Dobson Units (DU) was the lowest total ozone ever observed, the 1988 ozone hole is displaced from the South Pole, opposing a persistent maximum with values consistently above 500 DU. Daily ozone values above selected Southern Hemisphere stations are presented, along with comparisons of the 1988 ozone distribution to that of other years

    The 1989 Airborne Arctic Stratospheric Expedition Nimbus-7 TOMS data atlas

    Get PDF
    Over the past several years, world scientific attention was focused on the rapid and unanticipated decrease in the abundance of ozone over Antarctica during the Austral spring. A major aircraft campaign was conducted from December 1988 to February 1989 in response to the recently published Ozone Trends Panel Report which found that the largest decreases in Arctic ozone occurred during January to February at latitudes near the edge of the Arctic vortex. This atlas provides a complete set of TOMS ozone measurements over Europe and the North Atlantic for the duration of the experiment. These were the orbital TOMS measurements provided to the experimenters in near-real-time. In addition, a set of Northern Hemisphere TOMS ozone measurements for the period December 26, 1988 to March 20, 1989 is presented. A comparison of January and February 1989 mean ozone values to prior years is also presented

    Nimbus-7 TOMS Antarctic ozone atlas: August - December 1990

    Get PDF
    Because of the great environmental significance of ozone and to support continuing research at the Antarctic and other Southern Hemisphere stations, the development of the 1990 ozone hole was monitored using data from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) instrument, produced in near-real-time. This Atlas provides a complete set of daily polar orthographic projections of the TOMS total ozone measurements over the Southern Hemisphere for the period 1 Aug. through 31 Dec. 1990. The 1990 ozone hole developed in a manner similar to that of 1987 and 1989, reaching a comparable depth in early October. This was in sharp contrast to the much weaker hold of 1988. The 1990 ozone hole remained at polar latitudes as it filled in Nov., in contrast to other recent years when the hold drifted to mid-latitudes before disappearing. Daily ozone values above selected Southern Hemisphere stations are presented, along with comparisons of the 1990 ozone distribution to that of other years. A new calibration scheme (Version 6) was used to process 1990 ozone values, as well as to reprocess those of previous years

    The 1987 Airborne Antarctic Ozone Experiment: the Nimbus-7 TOMS Data Atlas

    Get PDF
    Total ozone data taken by the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) played a central role in the successful outcome of the 1987 Airborne Antarctic Ozone Experiment. The near-real-time TOMS total ozone observations were suppled within hours of real time to the operations center in Punta Arenas, Chile, over a telecommunications network designed specifically for this purpose. The TOMS data preparation and method of transfer over the telecommunications links are reviewed. This atlas includes a complete set of the near-real-time TOMS orbital overpass data over regions around the Palmer Peninsula of Antarctica for the period of August 8 through September 29, 1987. Also provided are daily polar orthographic projections of TOMS total ozone measurements over the Southern Hemisphere from August through November 1987. In addition, a chronology of the salient points of the experiment, along with some latitudinal cross sections and time series at locations of interest of the TOMS total ozone observations are presented. The TOMS total ozone measurements are evaluated along the flight tracks of each of the ER-2 and DC-8 missions during the experiment. The ozone hole is shown here to develop in a monotonic progression throughout late August and September. The minimum total ozone amount was found on 5 October, when its all-time lowest value of 109 DU is recorded. The hole remains well defined, but fills gradually from mid-October through mid-November. The hole's dissolution is observed here to begin in mid-November, when it elongates and begins to rotate. By the end of November, the south pole is no longer located within the ozone hole

    Alaskan and Canadian forest fires exacerbate ozone pollution over Houston, Texas, on 19 and 20 July 2004

    Get PDF
    On Monday, 19 July, and Tuesday, 20 July 2004, the air over Houston, Texas, appeared abnormally hazy. Transport model results and data from the Atmospheric Infrared Sounder (AIRS), the Moderate Resolution Imaging Spectrometer (MODIS), the Measurement of Ozone by Airbus In-service airCraft (MOZAIC) experiment, and the Total Ozone Mapping Spectrometer (TOMS) indicate that an air mass originating on 12 July 2004 over forest fires in eastern Alaska and western Canada arrived in Houston about 1 week later. Ozonesonde data from Houston on 19 and 20 July show elevated ozone at the surface (>125 ppbv) and even higher concentrations aloft (∼150 ppbv of ozone found 2 km above the surface) as compared to more typical profiles. Integrated ozone columns from the surface to 5 km increased from 17–22 DU (measured in the absence of the polluted air mass) to 34–36 DU on 19 and 20 July. The average on 20 July 2004 of the 8-hour maximum ozone values recorded by surface monitors across the Houston area was the highest of any July day during the 2001–2005 period. The combination of the ozone observations, satellite data, and model results implicates the biomass burning effluence originating in Alaska and Canada a week earlier in exacerbating pollution levels seen in Houston
    corecore