134 research outputs found
A new robust diagnostic polymerase chain reaction for determining the mating status of female Anopheles gambiae mosquitoes.
The principal malaria vector in Africa, Anopheles gambiae, contains two pairs of autosomes and one pair of sex chromosomes. The Y chromosome is only associated with males and other Y chromosome-specific DNA sequences, which are transferred to women during mating. A reliable tool to determine the mating status of dried wild An. gambiae females is currently lacking. DNA was extracted from dried virgin and mated females and used to test whether Y chromosome-specific polymerase chain reaction (PCR) markers can be successfully amplified and used as a predictor of mating. Here we report a new PCR-based method to determine the mating status among successfully inseminated and virgin wild An. gambiae females, using three male-specific primers. This dissection-free method has the potential to facilitate studies of both population demographics and gene flow from dried mosquito samples routinely collected in epidemiologic monitoring and aid existing and new malaria-vector control approaches
Recommended from our members
Abundance of conserved CRISPR-Cas9 target sites within the highly polymorphic genomes of Anopheles and Aedes mosquitoes.
A number of recent papers report that standing genetic variation in natural populations includes ubiquitous polymorphisms within target sites for Cas9-based gene drive (CGD) and that these "drive resistant alleles" (DRA) preclude the successful application of CGD for managing these populations. Here we report the results of a survey of 1280 genomes of the mosquitoes Anopheles gambiae, An. coluzzii, and Aedes aegypti in which we determine that ~90% of all protein-encoding CGD target genes in natural populations include at least one target site with no DRAs at a frequency of ≥1.0%. We conclude that the abundance of conserved target sites in mosquito genomes and the inherent flexibility in CGD design obviates the concern that DRAs present in the standing genetic variation of mosquito populations will be detrimental to the deployment of this technology for population modification strategies
Colonization of malaria vectors under semi-field conditions as a strategy for maintaining genetic and phenotypic similarity with wild populations
Background
Malaria still accounts for an estimated 207 million cases and 627,000 deaths worldwide each year. One proposed approach to complement existing malaria control methods is the release of genetically-modified (GM) and/or sterile male mosquitoes. As opposed to laboratory colonization, this requires realistic semi field systems to produce males that can compete for females in nature. This study investigated whether the establishment of a colony of the vector Anopheles arabiensis under more natural semi-field conditions can maintain higher levels of genetic diversity than achieved by laboratory colonization using traditional methods.<p></p>
Methods
Wild females of the African malaria vector An. arabiensis were collected from a village in southern Tanzania and used to establish new colonies under different conditions at the Ifakara Health Institute. Levels of genetic diversity and inbreeding were monitored in colonies of An. arabiensis that were simultaneously established in small cage colonies in the SFS and in a large semi-field (SFS) cage and compared with that observed in the original founder population. Phenotypic traits that determine their fitness (body size and energetic reserves) were measured at 10th generation and compared to founder wild population.<p></p>
Results
In contrast to small cage colonies, the SFS population of An. arabiensis exhibited a higher degree of similarity to the founding field population through time in several ways: (i) the SFS colony maintained a significantly higher level of genetic variation than small cage colonies, (ii) the SFS colony had a lower degree of inbreeding than small cage colonies, and (iii) the mean and range of mosquito body size in the SFS colony was closer to that of the founding wild population than that of small cage colonies. Small cage colonies had significantly lower lipids and higher glycogen abundances than SFS and wild population.<p></p>
Conclusions
Colonization of An. arabiensis under semi-field conditions was associated with the retention of a higher degree of genetic diversity, reduced inbreeding and greater phenotypic similarity to the founding wild population than observed in small cage colonies. Thus, mosquitoes from such semi-field populations are expected to provide more realistic representation of mosquito ecology and physiology than those from small cage colonies.<p></p>
Exploring the dynamics of gene drive mosquitoes within wild populations using an agent-based simulation
Gene drive technology is emerging as a potentially powerful tool in combating vector-borne diseases – notably malaria. This study introduces an agent-based model (ABM) focused on the deployment of genetically engineered mosquitoes with gene drive (GEM) in Príncipe Island, Republic of São Tomé and Príncipe, an island nation in the Gulf of Guinea, West Africa. Grounded in empirical data from laboratory and field studies, our model forecasts the dynamics of mosquito populations central to devising efficacious GEM release strategies. The core objective is to evaluate the time required for GEMs to constitute 90% of the mosquito population and to elucidate their dispersal throughout the island. This research is instrumental in understanding GEM potential in controlling malaria vectors
Diversity, differentiation, and linkage disequilibrium: prospects for association mapping in the malaria vector anopheles arabiensis
Association mapping is a widely applied method for elucidating the genetic basis of phenotypic traits. However, factors such as linkage disequilibrium and levels of genetic diversity influence the power and resolution of this approach. Moreover, the presence of population subdivision among samples can result in spurious associations if not accounted for. As such, it is useful to have a detailed understanding of these factors before conducting association mapping experiments. Here we conducted whole-genome sequencing on 24 specimens of the malaria mosquito vector, Anopheles arabiensis, to further understanding of patterns of genetic diversity, population subdivision and linkage disequilibrium in this species. We found high levels of genetic diversity within the An. arabiensis genome, with ~800,000 high-confidence, single- nucleotide polymorphisms detected. However, levels of nucleotide diversity varied significantly both within and between chromosomes. We observed lower diversity on the X chromosome, within some inversions, and near centromeres. Population structure was absent at the local scale (Kilombero Valley, Tanzania) but detected between distant populations (Cameroon vs. Tanzania) where differentiation was largely restricted to certain autosomal chromosomal inversions such as 2Rb. Overall, linkage disequilibrium within An. arabiensis decayed very rapidly (within 200 bp) across all chromosomes. However, elevated linkage disequilibrium was observed within some inversions, suggesting that recombination is reduced in those regions. The overall low levels of linkage disequilibrium suggests that association studies in this taxon will be very challenging for all but variants of large effect, and will require large sample sizes
Recommended from our members
Practical Application of a Relationship-Based Model to Engagement for Gene-Drive Vector Control Programs.
Engagement is an important component in the advancement of gene-drive vector control research programs as developers look to transition the technology from the laboratory to the field. As research advances and engagement surrounding this novel technology is put into practice, knowledge can be gained from practical experiences and applications in the field. A relationship-based model (RBM) provides a framework for end-user development of engagement programs and strategies. The model places end users at the center of the engagement decision-making processes rather than as recipients of predetermined strategies, methods, and definitions. Successful RBM application for healthcare delivery has previously been demonstrated, and the University of California Malaria Initiative (UCMI) has applied this model to its gene-drive program in the Democratic Republic of São Tomé and Príncipe. The model emphasizes the importance of local leadership in the planning, development, and implementation of all phases of project engagement. The primary aim of this paper is to translate the model from paper to practice and provide a transparent description, using practical examples, of the UCMI program implementation of RBM at its field site. End-user development of the UCMI engagement program provides a unique approach to the development of ethical, transparent, and effective engagement strategies for malaria control programs. This paper may also serve as a reference and example for projects looking to establish an engagement program model that integrates end-user groups in the decision-making processes surrounding engagement
Complex genome evolution in Anopheles coluzzii associated with increased insecticide usage in Mali.
In certain cases, a species may have access to important genetic variation present in a related species via adaptive introgression. These novel alleles may interact with their new genetic background, resulting in unexpected phenotypes. In this study, we describe a selective sweep on standing variation on the X chromosome in the mosquito Anopheles coluzzii, a principal malaria vector in West Africa. This event may have been influenced by the recent adaptive introgression of the insecticide resistance gene known as kdr from the sister species Anopheles gambiae. Individuals carrying both kdr and a nearly fixed X-linked haplotype, encompassing at least four genes including the P450 gene CYP9K1 and the cuticular protein CPR125, have rapidly increased in relative frequency. In parallel, a reproductively isolated insecticide-susceptible A. gambiae population (Bamako form) has been driven to local extinction, likely due to strong selection from increased insecticide-treated bed net usage
Mitogenome analyses reveal limited introduction of Anopheles coluzzii into the central African islands of São Tomé and Príncipe.
publishersversionpublishe
Water quality and immatures of the M and S forms of Anopheles gambiae s.s. and An. arabiensis in a Malian village
INTRODUCTION: The associations between the immatures of Anopheles gambiae s.s. (Diptera: Culicidae), its M and S forms, and Anopheles arabiensis among and within larval breeding habitats in Banambani, Mali were investigated under varying conditions of water quality and rainfall. The intent was to elucidate on niche partitioning of these taxa. METHODS: Immatures of An. arabiensis, An. gambiae s.s., and its M and S forms were sampled every alternate day for a month in mid-rainy season from three sampling sites in each of the larval breeding habitats (rock pools, swamp, and puddles). Water quality was characterized by alkalinity, conductivity, dissolved oxygen (D.O.), nitrate, orthophosphate, pH, temperature, total dissolved solids (TDS), and turbidity. A type 3 analysis of the GENMOD model was used to examine the associations between the proportional frequencies of young (first and second instar larvae) and old (third and fourth instar larvae and pupae) or total immatures of species or forms among sampling sites within and among larval breeding habitats during a category of rainfall as influenced by water quality. RESULTS: Of the 4,174 immatures sampled, 1,300 were molecularly identified to species and forms. Significant association between the proportional frequencies of young larvae of An. arabiensis, An. gambiae s.s., its M and S forms was found among sampling sites within habitats but not among larval breeding habitats. The proportional frequencies of young larvae of M and S forms varied daily perhaps due to recruitment, mortality, and dispersal within habitats. Conductivity and TDS had significant effects when the proportional frequencies of young larvae of M and S forms among sampling sites within habitats were significantly associated. Alkalinity, D.O., orthophosphate, pH, nitrate, temperature and turbidity had no effects on niche partitioning of species and forms among sampling sites within habitats. Rainfall did not affect the frequencies of these immatures. CONCLUSION: Conductivity and TDS have significant effects on niche partitioning of young larvae of M and S forms among sampling sites within habitats in Banambani, Mali
- …