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Islands possess physical characteristics that make them uniquely well-suited for initial field
trials of new genetic-based technologies applied to African malaria vectors. This has led to
efforts to characterize the degree of isolation of island mosquito populations. São Tomé
and Prıńcipe (STP) is a country composed of two small islands in the Gulf of Guinea
(Central Africa) where Anopheles coluzzii is the primary malaria vector. Several studies
have shown a relatively high degree of genetic isolation between A. coluzzii populations in
STP and the mainland compared with pairs of mainland populations separated by
equivalent distances. Here, we analyzed complete mitochondrial genomes of individual
A. coluzzii specimens from STP and neighboring mainland countries. The objectives are to
describe the history of A. coluzzii establishment in STP, specifically to address several
questions germane to their suitability as sites for a field trial release of genetically
engineered mosquitoes (GEMs). These questions include: (i) What are the origins of A.
coluzzii populations in STP?; (ii) How many introductions occurred?; (iii) When was A.
coluzzii introduced into STP? and (iv) Is there ongoing, contemporary gene flow into STP
from mainland populations? Phylogenetic analysis and haplotype networks were
constructed from sequences of 345 A. coluzzii from STP, and 107 individuals from 10
countries on or near the west coast of Africa. Analysis of these data suggest that there
have been two introductions of A. coluzzii onto the island of São Tomé that occurred
roughly 500 years ago and that these originated from mainland West Africa. It appears
that A. coluzzii has never been introduced into Prıńcipe Island directly from mainland
Africa, but there have been at least four introductions originating from São Tomé. Our
findings provide further support for the notion that contemporary populations of A. coluzzii
on São Tomé and Prıńcipe are genetically isolated from mainland populations of this
mosquito species.
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INTRODUCTION

Malaria is a life-threatening disease caused by parasites in the
genus Plasmodium, that in 2020 resulted in an estimated 627,000
deaths, 80% were in children under 5 years old (1). Sub-Saharan
Africa continues to account for about 95% of malaria cases and
94% of deaths that occur annually worldwide (1). Current
strategies to eliminate malaria greatly rely on vector control
methods, including insecticide-treated mosquito nets (ITNs) and
indoor residual spraying (IRS) (2). However, modelling studies
have shown that these intervention methods are insufficient for
malaria elimination (3, 4), and that development of innovative
approaches are urgently needed (5–8). One of the emerging
control methods under development is genetically engineered
mosquitoes (GEMs) with gene drive for population modification
or suppression (9, 10).

Strategies based onGEMs are designed to be high-impact, cost-
effective, sustainable, and when integrated with ongoing malaria
programs, can lead to malaria elimination (11). The World Health
Organization (WHO) Guidance Framework for evaluating GEMs
describes a phased process for testing and regulating their use (12).
Ecologically confined field-testing sites are considered for the 2nd

phase which proceeds confined laboratory and insectary testing
(phase 1) and precedes the final phase of open-field deployment.
In this context, physical islands have been suggested as ideal sites
for phase 2 field trials (13, 14). More specifically, oceanic islands
have been considered the best option due to their relatively small
size, geographic and genetic isolation, and low genetic complexity
of resident mosquito populations (15).
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The islands of São Tomé and Prıńcipe (STP) constitute an
African nation located in the Gulf of Guinea (Central Africa),
about 250 and 225 km, respectively, off the coast of Gabon, the
nearest continental landfall. There are only two species of
anopheline mosquitoes in these islands: Anopheles coluzzii,
which is a main malaria vector in West and Central Africa;
and Anopheles coustani a species whose role as a malaria vector is
unclear (16). Several previously published studies suggest genetic
isolation between A. coluzzii populations in STP and the
mainland (17–21). Here we analyzed A. coluzzii mitogenomes
from specimens collected in STP and neighboring continental
countries. The objectives of the work were to use haplotype
profiles of A. coluzzii to determine: i) the ancestral origin of
island populations; ii) the number of introductions, iii) an
estimation of when they occurred, and iv) the level of ongoing,
contemporary gene flow into the islands.
MATERIALS AND METHODS

Sample Collection and DNA Extraction
Mitogenome analysis included both newly acquired and
sequenced samples of A. coluzzii from São Tomé and Prıńcipe
islands, and publicly available data generated previously for this
species (Figure 1; Table S1). The former sample set included
immature stages of A. coluzzii collected from a total of 73
breeding sites in STP (38 localities on São Tomé and 35 on
Prıńcipe) (Table S1). The latter sample set was comprised of A.
FIGURE 1 | Sampling locations and sample sizes. In addition to São Tomé and Príncipe, Anopheles coluzzii samples originating from nine mainland African
countries (Angola, Benin, Burkina Faso, Cameroon, Cotê d’Ivoire, Gabon, Ghana, Guinea and Mali) were used in this study. Samples from the island of Bioko
(Equatorial Guinea) were also included. The insert map shows São Tomé and Prıńcipe islands. Table on the left displays the sample size (N) for each population.
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coluzzii from the UC-Davis Vector Genetics Laboratory (VGL)
archive (21) or from the Ag1000G database, phase 2 (22). These
samples originated from STP (São Tomé, N=14; Prıńcipe, N=15)
and 10 countries in West and Central Africa: Angola (N=15),
Benin (N=10), Burkina Faso (N=15), Cameroon (N=9), Côte
d’Ivoire (N=15), Equatorial Guinea (here after Bioko Island,
N=5), Gabon (N=5), Ghana (N=15), Guinea (N=4), Mali (N=14).

Individual mosquito genomic DNA from specimens taken
from the VGL sample archive were extracted using a Qiagen
Biosprint following our established protocol (23). Species
diagnostics was performed using species-specific SNPs
included in the DIS assay (24). The methods used for DNA
extraction, species identification and genome sequencing of
individuals from Ag1000G were as described by The Anopheles
gambiae 1000 Genomes Consortium (22).
Mitogenome Sequencing and Assembly
Individual mosquito DNA from the VGL samples was measured
using a dsDNA high sensitivity assay kit on a Qubit instrument
(Thermo Fisher Scientific, Waltham, MA, USA). Individual
library preparation was done with 10 ng of genomic DNA as
input and using KAPA HyperPlus Kit (Roche Sequencing
Solutions, Indianapolis, Indiana, USA) following our protocol
(25). AMPure SPRI beads (Beckman Coulter Life Sciences,
Indianapolis, Indiana, USA) were used for library size selection
and clean-up. Sequencing was performed on an Illumina HiSeq
4000 instrument at the UC Davis DNA Technologies Core
facility for a pooled library of equal amounts of individual
indexed libraries.

After demultiplex and adapter removal, raw-sequencing reads
were used to assemble the mitochondria contig using
NOVOPlasty version 2.6.7 (26) and 33 as K-mer’s value and
default settings. Samples from the Ag1000G were downloaded as
binary alignment map (BAM) files from the European
Nucleotide Archive (ENA) under accession number
PRJEB36277. BAM files were converted to FastQ format using
BEDTools (27) which were then used for mitochondria assembly
as described above.
Data Analysis
De novo assembled mitochondrial genomes were imported into
Geneious (2021.1.1) and aligned with a reference mitogenome
sequence of Anopheles coluzzii (JADFTP010000004.1) acquired
from GenBank. The alignment was visually inspected to confirm
that no missing data, singletons or polymorphism/ambiguities
were present in the sequences. Genetic diversity indices such as
nucleotide diversity (p) and haplotype diversity (Hd) were
assessed for each population using DnaSP 6.12.03 (28).
Phylogenetic Analysis
The annotated mtGenome of A. gambiae (NCBI Ref. Seq.
NC_002084.1) was used to partition the aligned mitogenomes.
Frontiers in Tropical Diseases | www.frontiersin.org 3
We conducted a partition test of heterogeneity to determine if
the complete mtGenome was appropriate to use for phylogenetic
analysis, as implemented in PartitionFinder 2.7.1 (29). The
models of evolution that best fit each partition were
determined by PartitionFinder 2.7.1 (Table S1). The A. coluzzii
sequence alignment was aligned with mitogenome sequences of
A. melas (KT382823.1), A. arabiensis (KT382816.1), A. gambiae
(NC_002084.1) (Table S1) to use as additional outgroups for
phylogenetic analyses using MAFFT v7.450 (30, 31).

A maximum likelihood (ML) analysis was conducted using
IQ-TREE v2.1.3 (32) to estimate a ML tree with 1,000 ultrafast
bootstrap replicates and resampled partitions and then sites
within resampled partitions (32–36). Likelihood settings
followed the general time reversible model (GTR) with a
gamma distribution and estimates of the proportion of
invariable sites (+I+G). Confidence in the resulting topologies
was assessed using rapid bootstrapping and a search for the best-
scoring tree with 1,000 replicates. We performed Bayesian
inference (BI) analyses using parameters selected by
PartitionFinder 2.7.1 (37) and conducted in MrBayes 3.2.7a
(38). An MCMC algorithm ran for 100,000,000 generations,
sampling one tree every 10,000 generations. Likelihood scores
were used to determine the value of burn-in and stationary
distributions. When split frequency in the Bayesian analyses
reached <0.01, a 50% majority-rule consensus tree was obtained
from the remaining trees. Posterior probabilities for clades were
compared for congruence between analyses, bootstrap values
ML > 70 and BI > 0.90 are presented on the phylograms.
Haplotype Networks and
Migration Patterns
Haplotypes were identified and corrected using Poppr 2.0 and
DnaSP 6.12.03 (39). An initial TCS haplotype network was
constructed using POPArt 1.7 (40). Mainland Africa samples
that differed by >25 mutations from individuals from São Tomé
and Prıńcipe were removed and a second haplotype network
constructed. A third haplotype network including only
individuals from São Tomé and Prı ́ncipe Islands was
constructed to identify the number of haplotypes and their
geographic distribution.

Patterns of migration between mainland Africa and STP were
investigated using a Bayesian approach compiled in Migrate-n v.
4.4.3 (41). Parameters were estimated under a full migration
model that allowed gene flow to occur among STP and their most
recent common ancestral populations. Migrate-n analyses were
conducted using default parameters with two independent runs
sampling every 200 steps for 200,000 recorded steps and a burn-
in of 20,000. The migration models were compared based on
their marginal likelihood and probability using thermodynamic
integration with Bezier approximation as implemented in
Migrate-n (42). Visualization of the migration pattern inferred
by Migrate-n analysis was constructed using the Migest Package
in R (43).
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Divergence Time Estimates
In order to create a mitogenome-based timeline for the
introduction of A. coluzzii onto STP, as reflected in their
mitogenome sequences, additional phylogenetic trees were
estimated. For this purpose, a multi-locus coalescent model
was applied to the data using the software BEAST2 [BEAST
2.5; (44)]. Intraspecific divergence times were concurrently
estimated using a substitution rate of 1.2 x 10-8 mutations per
site per year and assuming a generation time of three weeks (45).
BEAST2 analyses were performed in triplicate at the University
of California – Davis Genome Center High Performance
Computing cluster with Markov chains run for 100 million
generations or until convergence, with 10 million generations
of each run discarded as burn in and chains sampled every
10,000 generations. Based on the results from PartitionFinder
2.7.1 the HKY substitution model was used in combination with
gamma site-specific rate variation and a proportion of invariant
sites parameters with a relaxed log normal molecular clock. A
strict clock was selected over a relaxed clock comparing the
likelihood of the results of 10,000,000 generation test runs.
Tracer v1.7.1 (46) was used to assess convergence.
LogCombiner (47) was used to resample 10000 subtrees from
BEAST2 analyses and then TreeAnnotator (44) was used to
generate Maximum Clade Credibility (MCC) trees (44).
RESULTS

Mitogenome Assemblies and
Genetic Diversity
A total of 456 mitochondrial genomes were used to investigate
the origin of A. coluzzii in São Tomé and Prıńcipe islands. New
complete A. coluzzii mitochondrial genome sequences were
generated for 158 individuals from São Tomé and 158
individuals from Prıńcipe. After multi-alignment, variable sites
were identified in each sequence. São Tomé and Prıńcipe
presented the lowest number of polymorphisms and nucleotide
diversity estimates, despite being the largest sampling dataset
(Table 1). Haplotype diversity ranged from 0.134 to 1, in which
the Prıńcipe population had the lowest value (Table 1).
Frontiers in Tropical Diseases | www.frontiersin.org 4
Phylogenetics
This combined phylogenetic analysis (Figure S1A) represents
414 terminals from the genus Anopheles, representing four
species (A. melas, A. arabiensis, A. gambiae and A. coluzzii)
and 12 western African (WA) sites (Angola, Benin, Bioko,
Burkina Faso, Cameroon, Cotê d’Ivoire, Gabon, Ghana,
Guinea, Mali, São Tomé, and Prıńcipe), and includes at least
one representative of every unique haplotype (Figure S1B).

All relationships within the mitogenome phylogeny were
resolved with significant support using ML and Bayesian
analyses (ML > 70 and BI > 0.90; Figure 2). Anopheles
arabiensis is recovered as the earliest branching lineage and is
a sister clade to A. gambiae + A. coluzzii (Figure 2). The A.
coluzzii reference sequence (JADFTP010000004.1) is recovered
as the earliest branching lineage within A. coluzzii and is sister to
five WA clades. Individuals from São Tomé and Prıńcipe are
recovered as a monophyletic clade and are sister to individuals
from only the northwestern region of West Africa (NW: Benin,
Burkina Faso, Cotê d’Ivoire, Ghana, Guinea, and Mali) with
strong support (Figures 2 and S1).
Haplotype Network and Migration
Individuals from Central Africa (Angola, Bioko, Cameroon,
Gabon) form an unresolved cluster from haplotypes within the
network, with northern West African (NW) haplotypes
appearing as the closest relatives of haplotypes present in STP
(Figure S1). No shared haplotype between any west African
country and STP were identified (Figures 3A and S1). São Tomé
and Prıńcipe haplotypes are separated from the closest mainland
haplotypes by a least 11 mutations (Figure S1). We identified 5
unique haplotypes present in São Tomé (ST-1, 2, 3, 5 and 6), two
unique haplotypes in Prıńcipe (PR-1and 2) and three shared
haplotypes between the two islands (Figure 3A). We found no
geographic substructure of haplotypes within either island.
Migrate-n analysis indicates similar migration estimates of A.
coluzzii among the west African populations in the countries of
Benin, Burkina Faso, Cotê d’Ivoire, Ghana, Guinea, and Mali,
and from these populations to those in São Tomé (Figure 4).
This analysis also indicates migration from São Tomé to
Prıńcipe, with an insignificant chance of migration in the
TABLE 1 | Population genetic indices for each population of A. coluzzii.

Country N V p H Hd

Angola 15 66 0.00096 12 0.960
Benin 10 159 0.00316 9 0.978
Bioko 5 31 0.00120 3 0.700
Burkina Faso 15 189 0.00319 10 0.857
Cameroon 9 156 0.00311 8 0.972
Cote 15 167 0.00303 15 1.000
Gabon 5 65 0.00202 4 0.900
Ghana 15 145 0.00278 15 1.000
Guinea 4 78 0.00254 2 0.500
Mali 14 186 0.00308 14 1.000
Prıńcipe 173 27 0.00007 7 0.134
São Tomé 172 30 0.00037 8 0.789
April
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opposite direction (from Prıńcipe to São Tomé). Migration from
both islands to any of continental populations also appears
highly unlikely (Figure 4).
Frontiers in Tropical Diseases | www.frontiersin.org 5
Divergence Time Estimate
We identified a well-supported phylogeny generated by BEAST2
that is concordant with the ML and BI mitogenomic
FIGURE 2 | Phylogram of Anopheles coluzzii using complete mitogenome of a subset of individuals and only unique sequences. Values > 0.7 for ML and 90% for BI
are shown and represented by percentages. Gray highlighted clades with mixed geographic localities from mainland West Africa (WA). A. coluzzii individuals from WA
that share a most recent common ancestor with individuals from São Tomé and Prıńcipe are highlighted in yellow. Distinct clades containing individuals from São
Tomé (in blue) and Prıńcipe (in orange). Phylogram including the complete dataset is presented in Figure S1.
A B

FIGURE 3 | Haplotype network of A. coluzzii from São Tomé and Prıńcipe (STP) and their West Africa ancestral lineage. (A) Haplotype network with individuals from
São Tomé (blue) and Prıńcipe (orange), and individuals from mainland West Africa (yellow shade) that share a recent common ancestor with STP individuals.
Haplotypes labeled ST-1 to ST-7 are mainly found in São Tomé Island. Haplotype labeled PR-1 to PR-3 are found in Prıńcipe Island. (B) Map highlighting the
geographic locations of STP ancestral populations. Arrows indicate direction of A. coluzzii introduction to São Tomé Island from the continent, and to Prıńcipe Island
from São Tomé Island. Complete haplotype network is included in Figure S1.
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phylogenetic trees. The final BEAST2 trees support a recent
divergence of the São Tomé and Prıńcipe populations from
ancestral West African populations (Figures 3B and 5).
Divergence time estimates reveal that São Tomé and Prıńcipe
populations began differentiating fromWest African populations
around 500 years before present (Figure 5). Our BEAST2 trees
suggest that Prıńcipe populations represent a contemporary
divergence from São Tomé. Furthermore, the BEAST2 trees
support at least two introductions of A. coluzzii into São Tomé
and at least four introductions from there to Prıńcipe (Figure 5).
Frontiers in Tropical Diseases | www.frontiersin.org 6
DISCUSSION

Origin of A. coluzzii in São Tomé
and Prıńcipe
Our phylogenetic analyses and haplotype networks using whole
mitochondrial sequences support a West African (Mali, Burkina
Faso, Côte d’Ivoire, Guinea, Ghana, Benin) ancestry of A. coluzzii
on the islands. Similarly, a population genetic study has
presented the smallest FST values between STP populations and
West African populations from Ghana, Senegal and Côte d’Ivoire
FIGURE 4 | Migration pattern of A. coluzzii populations using Migrate-n analysis. The color of each arrow corresponds to the color of the source population locality
listed outside the circle. The width of each stripe is proportional to the estimated number of migrants.
FIGURE 5 | Divergence time estimates (x axis in years before present) of A. coluzzii populations from São Tomé, Prıńcipe and West & Central Africa (calculated with
a complete mitogenome coalescent model in *BEAST; outgroups not shown). Labels from São Tome and Prıńcipe correspond to haplotypes in Figure 2. Grey
highlighted terminals indicate samples from Central Africa; yellow highlighted terminals indicate samples from West Africa; blue highlighted terminals indicate
individuals from São Tomé; green highlighted terminals indicate clades found in individuals from São Tomé and Prıńcipe; orange highlighted terminals indicate
samples exclusively from Prıńcipe. Numbers on branches are the posterior probability values and the numbers within brackets are the 95% HPC intervals.
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using a region of the mitochondrial NADH dehydrogenase
subunit 5 (ND5) gene (19). Discordant results were found
using nuclear sequences that suggested the population of A.
coluzzii in Angola and Central Africa (Bioko, Cameroon, and
Gabon) as the genetically closest populations to STP (19, 21).
The biology of mitochondrial and nuclear DNA (nDNA)
includes fundamental differences such as ploidy, degree of
recombination, number of introns, effective population size
and mutation rate (48, 49). For A. coluzzii, it is a comparison
between the 15,000 base pair mitochondrial genome and 278
million base pair nuclear genome (50). However, mtDNA has
been extensively used to evaluate ancestry and demographic
changes in populations (51, 52).

Our analyses suggest that A. coluzzii was introduced onto the
island of São Tomé from West Africa on at most two occasions.
Historical information suggests this introduction occurred
during the first major wave of human migration associated
with the Portuguese colonization and subsequent slave trade
supporting sugar production around 1500-1600AD (53). The
introduction of malaria into São Tomé reported in 1493 (54)
supports the presence of the vector at around that time. Our
results also suggest that A. coluzzii was only introduced to
Prıńcipe Island from São Tomé four or possibly five times. Of
critical importance, we also found no evidence of contemporary
genetic exchange between STP and mainland Africa, or between
São Tomé and Prıńcipe which supports the suitability of STP for
early field trials of genetically engineered mosquitoes for malaria
elimination from the islands.
Haplotype Diversity Among A. coluzzii
Populations in São Tomé and Prıńcipe
Within the island of São Tomé, we identified five unique
haplotypes (ST-1, 2, 3, 5 and 6) which appear to be diverged
from a single ancestral lineage, designated lineage ST-1,
(Figure 3A). On Prıńcipe we identified 2 unique haplotypes
that likely originated on São Tomé from one to two introductions
(Figure 3A). We also observed three shared haplotypes between
the islands that, combined with our bidirectional migration
analysis, likely diverged on São Tomé and were subsequently
introduced to Prıńcipe (Figures 3A; 4). The presence of multiple
haplotypes on each island suggests that at some point
populations were isolated. However, the lack of geographic
substructure in haplotype distributions suggests that
contemporary gene flow among subpopulations is occurring
within each island. The small number of haplotypes
(Figure 3A) and absence haplotype divergence among
subpopulations within each island agrees with a very recent
colonization of STP, resulting in the observed population
bottleneck (founder effect) of A. coluzzii in STP (21).

As geographic distance from a source population increases,
overall genetic diversity decreases, resulting in fewer observed
mtDNA haplotypes. This can be the result of colonization events
on islands causing population bottlenecks (founder effect) (21,
55). The founder effect is amplified as the number of islands
Frontiers in Tropical Diseases | www.frontiersin.org 7
within a chain increases, because colonization typically occurs in
a stepwise pattern moving away from the island first colonized,
resulting in multiple population bottlenecks. The presence of a
greater number of haplotypes (8 vs 5) on the larger of the two
islands (São Tomé vs Prıńcipe) fits within island biogeography
theory and lends further support to São Tomé as the initial island
of A. coluzzii introduction (56). The results reported here
provide additional evidence that populations of the malaria
vector A. coluzzii are genetically isolated from mainland
conspecific populations. In addition, our results suggest that
introductions of this species into STP are rare events and that
there is little or no contemporary dispersal of this species into the
islands from mainland populations.
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9. Carballar-Lejarazú R, James AA. Population Modification of Anopheline
Species to Control Malaria Transmission. Pathog Glob Health (2017)
111:424–35. doi: 10.1080/20477724.2018.1427192

10. Simoni A, Hammond AM, Beaghton AK, Galizi R, Taxiarchi C, Kyrou K, et al.
A Male-Biased Sex-Distorter Gene Drive for the Human Malaria Vector
Anopheles Gambiae. Nat Biotechnol (2020) 38:1054–60. doi: 10.1038/s41587-
020-0508-1

11. James S, Collins FH, Welkhoff PA, Emerson C, Godfray HCJ, Gottlieb M, et al.
Pathway to Deployment of Gene Drive Mosquitoes as a Potential Biocontrol
Tool for Elimination of Malaria in Sub-Saharan Africa: Recommendations of
a Scientific Working Group†. Am J Trop Med Hyg (2018) 98(6_Suppl):1–49.
doi: 10.4269/ajtmh.18-0083

12. WHO/TDR and FNIH. The Guidance Framework for Testing Genetically
Modified Mosquitoes [Framework] (2014). Available at: https://www.who.int/
tdr/publications/year/2014/Guidance_frame_work_mosquitoes.pdf.

13. Scott TW, Takken W, Knols BG, Boëte C. The Ecology of Genetically Modified
Mosquitoes. Science (2002) 298:117–9. doi: 10.1126/science.298.5591.117

14. Committee on Gene Drive Research in Non-Human Organisms:
Recommendations for Responsible Conduct; Board on Life Sciences;
Division on Earth and Life Studies; National Academies of Sciences,
Engineering, and Medicine. Gene Drives on the Horizon: Advancing Science,
Navigating Uncertainty, and Aligning Research With Public Values.
Washington (DC): National Academies Press (US) (2016).

15. Lanzaro GC, Campos M, Crepeau M, Cornel A, Estrada A, Gripkey H, et al.
Selection of Sites for Field Trials of Genetically Engineered Mosquitoes With
Gene Drive. Evol Appl (2021) 14:2147–61. doi: 10.1111/eva.13283

16. Pinto J, Sousa CA, Gil V, Ferreira C, Gonçalves L, Lopes D, et al. Malaria in
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