697 research outputs found

    Lower limit for differential rotation in members of young loose stellar associations

    Get PDF
    Surface differential rotation (SDR) plays a key role in dynamo models. SDR estimates are therefore essential for constraining theoretical models. We measure a lower limit to SDR in a sample of solar-like stars belonging to young associations with the aim of investigating how SDR depends on global stellar parameters in the age range (4-95 Myr). The rotation period of a solar-like star can be recovered by analyzing the flux modulation caused by dark spots and stellar rotation. The SDR and the latitude migration of dark-spots induce a modulation of the detected rotation period. We employ long-term photometry to measure the amplitude of such a modulation and to compute the quantity DeltaOmega_phot =2p/P_min -2pi/P_max that is a lower limit to SDR. We find that DeltaOmega_phot increases with the stellar effective temperature and with the global convective turn-over time-scale tau_c. We find that DeltaOmega_phot is proportional to Teff^2.18pm 0.65 in stars recently settled on the ZAMS. This power law is less steep than those found by previous authors, but closest to recent theoretical models. We find that DeltaOmega_phot steeply increases between 4 and 30 Myr and that itis almost constant between 30 and 95 Myr in a 1 M_sun star. We find also that the relative shear increases with the Rossby number Ro. Although our results are qualitatively in agreement with hydrodynamical mean-field models, our measurements are systematically higher than the values predicted by these models. The discrepancy between DeltaOmega_phot measurements and theoretical models is particularly large in stars with periods between 0.7 and 2 d. Such a discrepancy, together with the anomalous SDR measured by other authors for HD 171488 (rotating in 1.31 d), suggests that the rotation period could influence SDR more than predicted by the models.Comment: 23 pages, 15 figures, 5 tables,accepted by Astronomy and Astrophysic

    A site selection model to identify optimal locations for microalgae biofuel production facilities in sicily (Italy)

    Get PDF
    The lack of sustainability and negative environmental impacts of using fossil fuel resources for energy production and their consequent increase in prices during last decades have led to an increasing interest in the development of renewable biofuels. Among possible biomass fuel sources, microalgae represent one of the most promising solutions. The present work is based on the implementation of a model that facilitates identification of optimal geographic locations for large-scale open ponds for microalgae cultivation for biofuels production. The combination of a biomass production model with specific site location parameters such as irradiance, geographical constraints, land use, topography, temperatures and CO2 for biofuels plants were identified in Sicily (Italy). A simulation of CO2 saved by using the theoretical biofuel produced in place of traditional fuel was implemented. Results indicate that the territory of Sicily offers a good prospective for these technologies and the results identify ideal locations for locating biomass fuel production facilities. Moreover, the research provides a robust method that can be tailored to the specific requirements and data availability of other territories. © Research India Publications

    Doppler imaging of the young late-type star LO Pegasi (BD +22 4409) in September 2003

    Full text link
    A Doppler image of the ZAMS late-type rapidly rotating star LO Pegasi, based on spectra acquired between 12 and 15 September 2003, is presented. The Least Square Deconvolution technique is applied to enhance the signal-to-noise ratio of the mean rotational broadened line profiles extracted from the observed spectra. In the present application, a unbroadened spectrum is used as a reference, instead of a simple line list, to improve the deconvolution technique applied to extract the mean profiles. The reconstructed image is similar to those previously obtained from observations taken in 1993 and 1998, and shows that LO Peg photospheric activity is dominated by high-latitude spots with a non-uniform polar cap. The latter seems to be a persistent feature as it has been observed since 1993 with little modifications. Small spots, observed between ~ 10 and ~ 60 degrees of latitude, appears to be different with respect to those present in the 1993 and 1998 maps.Comment: 21 pages, 10 figures, accepted by Monthly Notices of the Royal Astronomical Societ

    Activity cycles in members of young loose stellar associations

    Get PDF
    Magnetic cycles have been detected in tens of solar-like stars. The relationship between the cycle properties and global stellar parameters is not fully understood yet. We searched for activity cycles in 90 solar-like stars with ages between 4 and 95 Myr aiming to investigate the properties of activity cycles in this age range. We measured the length PcycP_{ cyc} of a given cycle by analyzing the long-term time-series of three activity indexes. For each star, we computed also the global magnetic activity index that is proportional to the amplitude of the rotational modulation and is a proxy of the mean level of the surface magnetic activity. We detected activity cycles in 67 stars. Secondary cycles were also detected in 32 stars. The lack of correlation between PcycP_{ cyc} and ProtP_{ rot} suggest that these stars belong to the Transitional Branch and that the dynamo acting in these stars is different from the solar one. This statement is also supported by the analysis of the butterfly diagrams. We computed the Spearman correlation coefficient rSr_{ S} between PcycP_{ cyc}, and different stellar parameters. We found that PcycP_{ cyc} is uncorrelated with all the investigated parameters. The index is positively correlated with the convective turn-over time-scale, the magnetic diffusivity time-scale τdiff\tau_{ diff}, and the dynamo number DND_{ N}, whereas it is anti-correlated with the effective temperature TeffT_{ eff}, the photometric shear ΔΩphot\Delta\Omega_{\rm phot} and the radius RCR_{ C} at which the convective zone is located. We found that PcycP_{ cyc} is about constant and that decreases with the stellare age in the range 4-95 Myr. We investigated the magnetic activity of AB Dor A by merging ASAS time-series with previous long-term photometric data. We estimated the length of the AB Dor A primary cycle as Pcyc=16.78±2yrP_{ cyc} = 16.78 \pm 2 \rm yr.Comment: 19 pages , 15 figures, accepte

    PM10 Dispersion Modeling by Means of CFD 3D and Eulerian–Lagrangian Models: Analysis and Comparison with Experiments☆

    Get PDF
    Abstract This research deals with the analysis of the dispersion of PM10 by using fluid-dynamic simulation framework. Firstly, an experimental campaign was made in a wind tunnel. A cylindrical emitter of PM10 was characterized in terms of PM10 mass flow rate and outlet velocity. It was positioned in the wind tunnel chamber where several sensors were also placed downwind. The use of different sensor configurations allowed the evaluation of the PM10 concentrations in several locations. The experimental campaign was reproduced in ANSYS-Fluent, by recreating in Design-Model, a 3D geometries of the test case. Different calculation grids were tested in order to find the proper balance between computing time and accuracy. The CFD 3D model was based on the Eulerian approach for the continuous phase and Lagrangian approach for the dispersion phase setting the DPM for the evaluation and dispersion of particulate matters. The turbulence was solved by using a k-É› RANS approach and a quite advanced unsteady DES model. Several simulations were carried out by varying the flow inlet velocities in configurations with and without obstacles. The results obtained from the post-processing phase were then compared with the experimental campaign. With obstacles a PM concentration increment is observed at all imposed air velocity because of recirculation phenomena generated around the obstacles

    Immunoglobulin A response against Gardnerella vaginalis hemolysin and sialidase activity in bacterial vaginosis

    Get PDF
    OBJECTIVE: The aim of this study was to investigate the correlation between the immunoglobulin A immune response to Gardnerella vaginalis hemolysin and sialidase activity in vaginal fluids from patients with bacterial vaginosis. STUDY DESIGN: Nonpregnant women who were examined at a gynecologic clinic, in an age range of 18 to 62 years, were enrolled. The study population comprised 131 healthy volunteers, 32 women with bacterial vaginosis that was positive for immunoglobulin A to Gardnerella vaginalis hemolysin, 40 women with bacterial vaginosis that was negative for immunoglobulin A to Gardnerella vaginalis hemolysin, and 19 women with Candida vaginitis. Bacterial vaginosis was diagnosed by clinical criteria and Gram stain. RESULTS: Sialidase activity was present in 75% (54/72) of patients with bacterial vaginosis. Women having bacterial vaginosis and lacking a specific immunoglobulin A response had a significantly higher level of sialidase activity than patients who had an immune response against Gardnerella vaginalis hemolysin. Sialidase activity was detected in 87% (35/40) of the former subgroup of patients with bacterial vaginosis and in 59% (19/32) of women of the latter subgroup. No sialidase activity was measured in patients with candidiasis. Specificity of the assay for healthy controls was 95% (124/131 women without sialidase activity). CONCLUSIONS: Sialidases produced by Prevotella bivia and other microorganisms present in the microflora of patients with bacterial vaginosis are very likely a virulence factor not only by destroying the mucins and enhancing adherence of bacteria but also by impairing a specific immunoglobulin A immune response against other virulence factors such as cytotoxin from Gardnerella vaginalis

    Oscillating Water Column Wave Energy Converter by Means of Straight-bladed Darrieus Turbine☆

    Get PDF
    Abstract The present paper deals with a preliminary study on an Oscillating Water Column Wave Energy Converter (OWCWEC). The energy conversion is based on a straight-bladed Darrieus type wind turbine. The design of the turbine for maximum power coefficient is discussed. A physical laboratory scale OWC wave energy converter model was built to measure velocity field in the column. The air column was built using transparent materials to allow Particle Image Velocimetry measurements. Velocity field around air turbine rotor was measured by means of PIV. The measured velocities with and without the air turbine are used as inputs in the design procedure and to calibrate and test mathematical models. Moreover, design criteria were obtained using experimental and mathematical results

    Experimental Analysis of a Plume Dispersion Around Obstacles

    Get PDF
    Abstract Nowadays, transport and deposition of aerosol particles (PM 2.5 , PM 10 , TSP) caused by industrial plants, environmental applications and transports, are of great concern to public health. Despite the establishment by the European Union of emission standards (European directive 2008/50/CE e.g) to control the limits of particulates in the air, the emissions by industrial plants are still not accurately monitored. In particular, the interaction between plume dispersion and obstacles, such as buildings, is not currently well studied. A lot of theoretical researches were carried out in this field with a lack of experimental data comparison. This paper focuses on a laboratory work made to better explain the interaction of a continuous plume released from a point source and various obstacles. First of all a vertical pipe was reproduced, a continuous aerosol emitter was characterized in terms of a specified and controlled mass flow and the ratio between smoke emission and the total suspended particulates thanks to use of the certified gravimetric calculation of PM 10 . The experimental campaigns were conducted by means of a wind tunnel all the data collected were validated. The characterization of plume was made by the use of several sensors and calculation of velocity in several points of the field. Moreover, the plume dispersion was studied also by using digital image analysis. It was then investigated downwind the influence of obstacles of various shapes and distances from source in terms of aerosol concentration in several points
    • …
    corecore