31 research outputs found

    Spatio-temporal requirements for binocular correlation in stereopsis

    No full text
    We measured sensitivity to binocular correlation in dynamic random-dot stereograms that defined moving sinusoidal gratings-in-depth. At a range of spatial frequencies and drift rates we established sensitivity by adding Gaussian distributed disparity noise to the modulation of disparity that defined a cyclopean grating, and finding the noise amplitude that rendered the grating just detectable. This permitted correlation thresholds to be measured at a range of suprathreshold disparity amplitudes. Spatial requirements for binocular correlation depend little on temporal frequency, and vice versa. This suggests that binocular correlation mechanisms can be characterized by independent spatial and temporal sensitivity functions. The temporal frequency function has a low pass characteristic. Sensitivity declines above about 1 c/sec, reaching its limit at 4-8 c/sec. The spatial characteristic depends greatly on the amplitude of disparity modulation, changing from band pass at low amplitude to low pass at high amplitude. The maximum resolvable spatial frequency is 4-6 c/deg, but declines sharply for relatively high amplitudes. The interaction between amplitude and spatial frequency cannot be explained by fixed high or low limits on detectable disparity gradients.</p

    Horizontal and vertical noise tolerance of binocular correlation in random dot stereograms

    No full text
    Although our eyes are separated horizontally and binocular disparities are therefore mainly horizontal, binocular correlation tolerates substantial vertical disparities. To study the size of the vertical disparity range for binocular correlation, we measured the tolerance for both horizontal and vertical disparity noise, in detecting sinusoidal depth gratings in random dot patterns. We used dense, dynamic random dot stereograms and Gaussian distributed disparity noise. Trials consisted of two 0.8 s intervals, one containing the depth corrugation (stimulus), the other containing the same disparity values randomly distributed across the window (reference). For different grating parameters tolerance for vertical disparity noise was at least as large as for horizontal disparity noise. Moreover, the effects of horizontal and vertical noise added linearly, suggesting a horizontal-vertical isotropy. To find out whether these resultss indeed reflect the size of horizontal and vertical ranges for resolvable disparities, we performed a parametric model analysis for binocular correlation. The model was presented with random dot stereograms of sinusoidal depth gratings, similar to those in the psychophysical measurements, and solved the correspondence problem by determining all possible matches of a pixel in one eye within an ellipsoid correlation area around the corresponding point in the other eye. An arbitrary, but highly efficient algorithm determined whether the stimulus or reference presentation provided the best match to a sinusoidal depth corrugation. A comparison of horizontal and vertical noise tolerance for the human observer and for the model revealed upper and lower limits for the vertical disparity range. However, psychophysical results could be reproduced with different combinations of horizontal and vertical disparity range, and therefore do not reflect a low level horizontal-vertical isotropy for binocular correlation.</p

    Attentional modulation of adaptation to two-component transparent motion

    No full text
    We have studied the effects of voluntary attention on the induction of motion aftereffects (MAEs). While adapting, observers paid attention to one of two transparently displayed random dot patterns, moving concurrently in opposite directions. Selective attention was found to modulate the susceptibility to motion adaptation very substantially. To measure the strength of the induced MAEs we modulated the signal-to-noise ration of a real motion signal in a random dot pattern that was used to balance the aftereffect. Results obtained for adapting to single motion vectors show that the MAE can be represented as a shift of the psychometric function for motion direction discrimination. Selective attention to the different components of transparent motion altered the susceptibility to adaptation. Shifting attention from one component to the other caused a large shift of the psychometric curves, about 70-75% of the shift measured for the separate components of the transparent adapting stimulus. We conclude that attention can differentiate between spatially superimposed motion vectors and that attention modulates the activity of motion mechanisms before or at the level where adaptation gives rise to MAEs. The results are discussed in light of the role of attention in visual perception and the physiological site for attentional modulation of MAEs.</p

    Tuning for temporal interval in human apparent motion detection

    No full text
    Detection of apparent motion in random dot patterns requires correlation across time and space. It has been difficult to study the temporal requirements for the correlation step because motion detection also depends on temporal filtering preceding correlation and on integration at the next levels. To specifically study tuning for temporal interval in the correlation step, we performed an experiment in which prefiltering and postintegration were held constant and in which we used a motion stimulus containing coherent motion for a single interval value only. The stimulus consisted of a sparse random dot pattern in which each dot was presented in two frames only, separated by a specified interval. On each frame, half of the dots were refreshed and the other half was a displaced reincamation of the pattern generated one or several frames earlier. Motion energy statistics in such a stimulus do not vary from frame to frame, and the directional bias in spatiotemporal correlations is similar for different interval settings. We measured coherence thresholds for left-right direction discrimination by varying motion coherence levels in a Quest staircase procedure, as a function of both step size and interval. Results show that highest sensitivity was found for an interval of 17-42 ms, irrespective of viewing distance. The falloff at longer intervals was much sharper than previously described. Tuning for temporal interval was largely, but not completely, independent of step size. The optimal temporal interval slightly decreased with increasing step size. Similarly, the optimal step size decreased with increasing temporal interval.</p

    Distinctive characteristics of subclasses of red-green P-cells in LGN of macaque

    No full text
    We characterized the chromatic and temporal properties of a sample of 177 red-green parvocellular neurons in the LGN of Macaco, nemestrina using large-field stimuli modulated along different directions through a white point in color space. We examined differences among the properties of the four subclasses of red-green P-cells (on- and off-center, red and green center). The responses of off-center cells lag the stimulus more than do those of on-center cells. At low temporal frequencies, this causes the phase difference between responses of the two kinds of cells to be considerably less than 180 cleg. For isoluminant modulations the phases of on- and off-responses were more nearly 180 deg apart. A cell's temporal characteristics did not depend on the class of cone driving its center. Red center and green center cells have characteristically different chromatic properties, expressed either as preferred elevations in color space, or as weights with which cells combine inputs from L- and M-cones. Red center cells are relatively more responsive to achromatic modulation, and attach relatively more weight to input from the cones driving the center Off-center cells also attach relatively more weight than do on-center cells to input from the class of cone driving the center.</p

    Temporal-chromatic interactions in LGN P-cells

    No full text
    We studied the interaction between the chromatic and temporal properties of parvocellular (P) neurons in the lateral geniculate nucleus (LGN) of macaque monkeys. We measured the amplitudes and phases of responses to stimulation by spatially uniform fields modulated sinusoidally about a white point in a three-dimensional color space, at a range of temporal frequencies between 1 and 25 Hz. Below about 4 Hz, temporal frequency had relatively little effect on chromatic tuning. At higher frequencies chromatic opponency was weakened in almost all cells. The complex interactions between temporal and chromatic properties are represented by a linear filter model that describes response amplitude and phase as a function of temporal frequency and direction in color space along which stimuli are modulated. The model stipulates the cone inputs to center and surround, their temporal properties, and the linear combination of center and surround signals. It predicts the amplitudes and phases of responses of P-cells, and the change of chromatic properties with temporal frequency. We used the model to investigate whether or not the chromatic signature of the surround in a red-green cell could be estimated from the change in the cell's chromatic properties with temporal frequency. Our findings could be equally well described by mixed cone surrounds as by pure cone surrounds, and we conclude that, with regard to temporal properties, there is no benefit to be gained by segregating cone classes in center and surround.</p

    The parallel between reverse-phi and motion aftereffects

    No full text
    Periodically flipping the contrast of a moving pattern causes a reversal of the perceived direction of motion. This direction reversal, known as reverse-phi motion, has been generally explained with the notion that flipping contrasts actually shifted the balance of motion energy toward the opposite direction. In this sense, the reversal is trivial because any suitable motion energy detector would be optimally excited in a direction opposite to that for regular motion. This notion, however, does not address the question how these two types of motion are initially detected. Here we show several perceptual phenomena indicating that low-level detection of the two types of motion is quite different. Reverse-phi motion percepts in many respects behave more like motion aftereffects than like regular motion. Motion adaptation causes reduced activity during a stationary test stimulus, which by means of directional opponency leads to motion perceived in the opposite direction. Our findings suggest that reverse-phi motion similarly reduces the activity of low-level motion detectors.</p

    Temporal-chromatic interactions in LGN P-cells

    No full text

    Implied motion activation in cortical area MT can be explained by visual low-level features

    Get PDF
    To investigate form-related activity inmotion-sensitive cortical areas, we recorded cell responses to animate implied motion in macaque middle temporal (MT) and medial superior temporal (MST) cortex and investigated these areas using fMRI in humans. In the single-cell studies, we compared responses with static images of human or monkey figures walking or running left or right with responses to the same human and monkey figures standing or sitting still. We also investigated whether the view of the animate figure (facing left or right) that elicited the highest response was correlated with the preferred direction for moving random dot patterns. First, figures were presented inside the cell's receptive field. Subsequently, figures were presented at the fovea while a dynamic noise pattern was presented at the cell's receptive field location. The results show that MT neurons did not discriminate between figures on the basis of the implied motion content. Instead, response preferences for implied motion correlated with preferences for low-level visual features such as orientation and size. No correlation was found between the preferred view of figures implying motion and the preferred direction for moving random dot patterns. Similar findings were obtained in a smaller population of MST cortical neurons. Testing human MT+ responses with fMRI further corroborated the notion that low-level stimulus features might explain implied motion activation in human MT+. Together, these results suggest that prior human imaging studies demonstrating animate implied motion processing in area MT+ can be best explained by sensitivity for low-level features rather than sensitivity for the motion implied by animate figures.Publisher PDFPeer reviewe
    corecore