6,746 research outputs found

    An investigation of vortex-induced aerodynamic characteristics of supersonic cruise configurations

    Get PDF
    The linear lifting surface theory which predicts the life in supersonic flow, even though the drag is usually underpredicted, is described. A method for calculating the nonlinear wave drag was developed to remedy this deficiency. The calculated sectional drag is modified by adding the difference between the exact two dimensional (2-D) and the linear 2-D wave drag at the calculated sectional lift coefficient. Improvement in the supersonic drag prediction is shown. The VORCAM code was modified for the FORTRAN 77 language and its input stream was rearranged. The Boeing code was adapted to the computer system. All CDC special features in the code are replaced with standard FORTRAN algorithms. It is suggested that because of the nonlinearity the solution appears to be nonunique crowding of two vortices, a mechanism of vortex asymmetry, is investigated

    Some applications of the quasi vortex-lattice method in steady and unsteady aerodynamics

    Get PDF
    The quasi vortex-lattice method is reviewed and applied to the evaluation of backwash, with applications to ground effect analysis. It is also extended to unsteady aerodynamics, with particular interest in the calculation of unsteady leading-edge suction. Some applications in ornithopter aerodynamics are given

    On the logarithmic-singularity correction in the kernel function method of subsonic lifting-surface theory

    Get PDF
    A logarithmic-singularity correction factor is derived for use in kernel function methods associated with Multhopp's subsonic lifting-surface theory. Because of the form of the factor, a relation was formulated between the numbers of chordwise and spanwise control points needed for good accuracy. This formulation is developed and discussed. Numerical results are given to show the improvement of the computation with the new correction factor

    A theoretical investigation of the aerodynamics of low-aspect-ratio wings with partial leading-edge separation

    Get PDF
    A numerical method is developed to predict distributed and total aerodynamic characteristics for low aspect-ratio wings with partial leading-edge separation. The flow is assumed to be steady and inviscid. The wing boundary condition is formulated by the quasi-vortex-lattice method. The leading-edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at mid-points to satisfy the force free condition. The wake behind the trailing-edge is also force free. The flow tangency boundary condition is satisfied on the wing, including the leading- and trailing-edges. Comparison of the predicted results with complete leading-edge separation has shown reasonably good agreement. For cases with partial leading-edge separation, the lift is found to be highly nonlinear with angle of attack

    Calculation of wing response to gusts and blast waves with vortex lift effect

    Get PDF
    A numerical study of the response of aircraft wings to atmospheric gusts and to nuclear explosions when flying at subsonic speeds is presented. The method is based upon unsteady quasi-vortex-lattice method, unsteady suction analogy, and Pade approximate. The calculated results, showing vortex lag effect, yield reasonable agreement with experimental data for incremental lift on wings in gust penetration and due to nuclear blast waves

    A computer program for calculating aerodynamic characteristics of low aspect-ratio wings with partial leading-edge separation

    Get PDF
    The necessary information for using a computer program to predict distributed and total aerodynamic characteristics for low aspect ratio wings with partial leading-edge separation is presented. The flow is assumed to be steady and inviscid. The wing boundary condition is formulated by the Quasi-Vortex-Lattice method. The leading edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at midpoints to satisfy the force free condition. The wake behind the trailing edge is also force free. The flow tangency boundary condition is satisfied on the wing, including the leading and trailing edges. The program is restricted to delta wings with zero thickness and no camber. It is written in FORTRAN language and runs on CDC 6600 computer

    Transonic airfoil analysis and design in nonuniform flow

    Get PDF
    A nonuniform transonic airfoil code is developed for applications in analysis, inverse design and direct optimization involving an airfoil immersed in propfan slipstream. Problems concerning the numerical stability, convergence, divergence and solution oscillations are discussed. The code is validated by comparing with some known results in incompressible flow. A parametric investigation indicates that the airfoil lift-drag ratio can be increased by decreasing the thickness ratio. A better performance can be achieved if the airfoil is located below the slipstream center. Airfoil characteristics designed by the inverse method and a direct optimization are compared. The airfoil designed with the method of direct optimization exhibits better characteristics and achieves a gain of 22 percent in lift-drag ratio with a reduction of 4 percent in thickness
    corecore