169 research outputs found

    Master of Science

    Get PDF
    thesisSoftware has been developed to evaluate National Weather Service spot forecasts issued to support prescribed burns and early-stage wildfires. Fire management officials request spot forecasts from National Weather Service Weather Forecast Offices to provide detailed guidance as to atmospheric conditions in the vicinity of planned prescribed burns as well as wildfires that do not have incident meteorologists on site. This open source software with online display capabilities is used to examine an extensive set of spot forecasts of maximum temperature, minimum relative humidity, and maximum wind speed from April 2009 through November 2013 nationwide. The forecast values are compared to the closest available surface observations at stations installed primarily for fire weather and aviation applications. The accuracy of the spot forecasts is compared to those available from the National Digital Forecast Database (NDFD). Spot forecasts for selected prescribed burns and wildfires are used to illustrate issues associated with the verification procedures. Cumulative statistics for National Weather Service County Warning Areas and for the nation are presented. Basic error and accuracy metrics for all available spot forecasts and the entire nation indicate that the skill of the spot forecasts is higher than that available from the NDFD, with the greatest improvement for maximum temperature and the least improvement for maximum wind speed

    The new social discipline : a critical analysis of federal drug-free workplace legislation and employee drug testing

    Get PDF
    In this research I contend that the arguments for drug-free workplaces are framed within a narrative of science that lends authenticity to the recurring themes that drug testing promotes the health, safety, and productivity of the American workforce. The sense of authenticity effectively delimits the discourse of drug testing and presents the complexities of drug abuse in binary oppositions that contribute to normalizing the behavior of all individuals, not just those who abuse drugs. I suggest that the process of normalization reproduces the delimitation of discourse and provides justifications for introducing drug testing into areas of society beyond the walls of the workplace. I conduct a content analysis on the transcripts of the congressional hearings preceding the Drug-Free Workplace Act of 1988 and the Drug-Free Workplace Act of 1998. A Foucauldian perspective is employed to provide an understanding as to how the drug test has gained a position of dominance in American society. By challenging the narrative of science found in the transcripts I offer resistance to the reproduction of the binary oppositions surrounding drug abuse; in essence, a resistance to the power of drug testing

    Construction Resource Use of Two Different Types and Scales of Iowa Swine Production Facilities

    Get PDF
    As global populations and affluence rise, there is increasing demand for energy, animal protein, and construction materials. In many cases, available resource pools are insufficient to meet growing market demands, resulting in increased prices and competition for limited resources. This study evaluates key construction resources needed to build different types and scales of Iowa swine production facilities. Two types of facilities — conventional confinement and hoop barn-based — within farrow-to-finish pig production systems scaled to produce either 5,200 or 15,600 market pigs annually are examined. Conventional confinement facilities are typical of pork industry practice in the United States and are characterized by individual gestation stalls and 1,200 head grow-finish buildings with slatted concrete floors and liquid manure systems. The hoop barn-based alternative uses bedded group pens in hoop barns for gestation and finishing. Five building materials: concrete, steel, lumber, thermoplastics, insulation, as well as crushed rock and diesel fuel used for building site preparation are considered. Land surface area required for buildings and pig production infrastructure are also compared. Relative market costs of newly constructed swine facilities are compared under several material price scenarios. Using hoop barns for grow-finish and gestation results in lower construction costs. Increasing the scale of pig production results in lower construction costs per pig space, however the construction costs per pig space for a 5,200 head hoop barn-based complex is less than the construction costs per pig space for a 15,600 head conventional confinement system. In terms of construction resource use and cost, hoop barns for swine are a viable alternative that are less dependent on the scale of production than conventional confinement facilities

    Construction Resource Use of Different Types and Scales of Swine Production Facilities

    Get PDF
    As global populations and affluence rise, there is increasing demand for energy, animal protein, and construction materials. In some cases, available resource pools are insufficient to meet growing market demands, resulting in increased prices and competition for limited resources. This study evaluates key construction resources needed to build different types and scales of swine production facilities. Two types of facilities—conventional confinement and hoop barnbased—within farrow-to-finish pig production systems scaled to produce either 5,200 or 15,600 market pigs annually are examined. Conventional confinement facilities are typical of pork industry practice in the United States and are characterized by individual gestation stalls and 1,200 head grow-finish buildings with slatted concrete floors and liquid manure systems. The hoop barn-based alternative uses bedded group pens in hoop barns for gestation and finishing. Five building materials: concrete, steel, lumber, thermoplastics, insulation, as well as crushed rock and diesel fuel used for building site preparation are considered. Land surface area required for buildings and pig production infrastructure are also compared. Fewer construction resources are needed to construct a hoop barn-based swine production system than conventional facilities. Using hoop barns for growfinish and gestation also results in lower construction costs. Increasing the scale of pig production results in lower construction costs per pig space, however the construction costs per pig space for a 5,200 head hoop barn-based complex is less than the construction costs per pig space for a 15,600 head conventional confinement system. Hoop barns for swine are a viable alternative that are less dependent on the scale of production than conventional confinement facilities

    Energy use in pig production: An examination of current Iowa Systems

    Get PDF
    This paper compares energy use for different pig production systems in Iowa, a leader in US swine production. Pig production systems include not only the growth and performance of the pigs, but also the supporting infrastructure of pig production. This supporting infrastructure includes swine housing, facility management, feedstuff provision, swine diets, and manure management. Six different facility type Ă— diet formulation Ă— cropping sequence scenarios were modeled and compared. The baseline system examined produces 15,600 pigs annually using confinement facilities and a corn-soybean cropping sequence. Diet formulations for the baseline system were corn-soybean meal diets that included the synthetic AA L-lysine and exogenous phytase. The baseline system represents the majority of current US pork production in the Upper Midwest, where most US swine are produced. This system was found to require 744.6 MJ per 136-kg market pig. An alternative system that uses bedded hoop barns for grow-finish pigs and gestating sows would require 3% less (720.8 MJ) energy per 136-kg market pig. When swine production systems were assessed, diet type and feed ingredient processing were the major influences on energy use, accounting for 61 and 79% of total energy in conventional and hoop barn-based systems, respectively. Improving feed efficiency and better matching the diet formulation with the thermal environment and genetic potential are thus key aspects of reducing energy use by pig production, particularly in a hoop barn-based system. The most energy-intensive aspect of provisioning pig feed is the production of synthetic N for crop production; thus, effectively recycling manure nutrients to cropland is another important avenue for future research. Almost 25% of energy use by a conventional farrow-to-finish pig production system is attributable to operation of the swine buildings. Developing strategies to minimize energy use for heating and ventilation of swine buildings while maintaining pig comfort and performance is a third critical area for future research. The hoop barn-based alternative uses 64% less energy to operate buildings but requires bedding and 2.4% more feed. Current Iowa pig production systems use energy differently but result in similar total energy use. Compared with 1975, current farrow-to-finish systems in Iowa require 80% less energy to produce live market pigs

    Nonsolar energy use and one-hundred-year global warming potential of Iowa swine feedstuffs and feeding strategies

    Get PDF
    Demand for nonsolar energy and concern about the implications of fossil fuel combustion have encouraged examination of energy use associated with agriculture. The United States is a global leader in pig production, and the United States swine industry is centered in Iowa. Feed is the largest individual input in pig production, but the energy consumption of the Iowa swine feed production chain has yet to be critically examined. This analysis examines nonsolar energy use and resulting 100-yr global warming potential (GWP) associated with the swine feed production chain, beginning with cultivation of crops and concluding with diet formulation. The nonsolar energy use and accompanying 100-yr GWP associated with production of 13 common swine feed ingredients are estimated. Two diet formulation strategies are considered for 4 crop sequence Ă— ingredient choice combinations to generate 8 crop sequence Ă— diet formulation scenarios. The first formulation strategy (simple) does not include synthetic AA or phytase. The second strategy (complex) reduces CP content of the diet by using L-lysine to meet standardized ileal digestibility lysine requirements of pigs and includes the exogenous enzyme phytase. Regardless of crop sequence Ă— diet formulation scenario, including the enzyme phytase is energetically favorable and reduces the potential excretion of P by reducing or removing inorganic P from the complete diet. Including L-lysine reduces the CP content of the diet and requires less nonsolar energy to deliver adequate standardized ileal digestible lysine than simply feeding soybean meal. Replacing soybean meal with full-fat soybeans is not energetically beneficial under Iowa conditions. Swine diets including dried distillers grains with solubles and crude glycerol require approximately 50% more nonsolar energy inputs than corn-soybean meal diets or corn-soybean meal diets including oats. This study provides essential information on cultivation, processing, and manufacture of swine feed ingredients in Iowa that can be coupled with other models to estimate the nonsolar energy use and 100-yr GWP of pig production

    Optimizing Energy Use in Pig Production: An Examination of Iowa Systems

    Get PDF
    Energy is used in all aspects of pig production, from the manufacture of materials used in building construction to the cultivation and processing of feedstuffs. Historically the availability of fossil fuels has minimized pressure to consider all uses of energy in pig production. Rising energy prices, uncertain access to petroleum supplies, and recognition of the environmental impacts of fossil fuels are increasing awareness and incentive to reduce consumption of limited resources. This project estimates non-solar energy use for pig production options in Iowa. The baseline system produces 15,600 pigs annually using confinement facilities and a corn-soybean cropping sequence. Diet formulations for the baseline system include supplemented synthetic amino acid L-lysine and exogenous phytase. The baseline system represents the majority of current pork production systems in Iowa and the Upper Midwest where most U.S. swine are produced. This system is designed to minimize land-surface area requirements and encourage maximal pork production per unit of feed net energy and standardized ileal digestible lysine fed to pigs. The baseline system for swine production in Iowa is estimated to require 5.5 MJ non-solar energy/kg of live weight pig produced. In general producing pigs in Iowa in 2009 requires about 85% less non-renewable energy compared to 1975. An alternative system using hoop barns for grow-finish pigs and gestating sows was also evaluated. Using bedded hoop barns for gestating sows and grow finish pigs requires less energy to heat and ventilate buildings, but more energy to grow and process feed than conventional systems. Using hoop barns for swine production requires more feed and thus more non-solar energy to grow and process feed ingredients. However the savings in non-solar energy associated with operating hoop barn-based swine systems relative to conventional confinement systems nearly offsets those inputs. The alternative hoop-based system would require 5.6 MJ non-solar energy/kg live weight. The total energy used for both housing systems is very similar. Energy use for pig production is influenced by crop sequence and diet strategy with nitrogen management being a critical leverage point

    An Application Programming Interface for Synthetic Snowflake Particle Structure and Scattering Data

    Get PDF
    The work by Kuo and colleagues on growing synthetic snowflakes and calculating their single-scattering properties has demonstrated great potential to improve the retrievals of snowfall. To grant colleagues flexible and targeted access to their large collection of sizes and shapes at fifteen (15) microwave frequencies, we have developed a web-based Application Programming Interface (API) integrated with NASA Goddard's Precipitation Processing System (PPS) Group. It is our hope that the API will enable convenient programmatic utilization of the database. To help users better understand the API's capabilities, we have developed an interactive web interface called the OpenSSP API Query Builder, which implements an intuitive system of mechanisms for selecting shapes, sizes, and frequencies to generate queries, with which the API can then extract and return data from the database. The Query Builder also allows for the specification of normalized particle size distributions by setting pertinent parameters, with which the API can also return mean geometric and scattering properties for each size bin. Additionally, the Query Builder interface enables downloading of raw scattering and particle structure data packages. This presentation will describe some of the challenges and successes associated with developing such an API. Examples of its usage will be shown both through downloading output and pulling it into a spreadsheet, as well as querying the API programmatically and working with the output in code

    Calibration Procedure for Fuel Flow Meters at the Nebraska Tractor Test Lab

    Get PDF
    Reports in the literature indicated several factors that can influence the accuracy of Coriolis Effect mass flow meters. A Coriolis Effect mass flow meter is used to verify tractor manufacturer’s fuel consumption claims at the Nebraska Tractor Test Laboratory (NTTL). The accuracy requirement placed on the flow meter by the Organization for Economic Co-operation and Development (OECD) in the Code 2 tractor performance test procedure is not clear, but in the most conservative interpretation is ±0.5% of each flow rate measured. Results showed a dynamic weighing calibration method was not accurate enough to obtain a calibration of the flow meter to the desired accuracy level. A static weighing calibration method developed showed no significant difference between the calibration determined by the flow meter’s manufacturer with water and the calibration determined by NTTL with No. 2 diesel fuel. Static weighing calibration tests showed that for flow rates at or above 32 kg/h, the flow meter met the ±0.5% error most conservative interpretation of tolerance on flow rate from OECD Code 2

    Developing Berkshire Market Pig Growth Curves

    Get PDF
    Several factors have stimulated interest in an old, rather minor swine breed, Berkshire pigs. Berkshires produce pork that is darker, with more intramuscular fat than most swine breeds and lines currently. As the majority of modern pigs were genetically selected to be leaner, the Berkshire breed has continued to produce more flavorful pork. Asian consumers, especially Japanese, prefer and will pay a premium for Berkshire pork. American chefs and discriminating consumers request Berkshire pork, a strong market demand that has caused a flourish in the pork niche market largely centered around pork from Berkshirebred pigs. Some Iowa pork producers are raising Berkshire or Berkshire-cross pigs exclusively for export and niche markets. Several Berkshire niche markets and marketers are currently active in Iowa. Many of these markets require that the pigs must be reared in bedded or outdoor settings. A popular housing system used in Iowa is the bedded hoop barn
    • …
    corecore