20 research outputs found

    Identification of Vascular and Hematopoietic Genes Downstream of etsrp by Deep Sequencing in Zebrafish

    Get PDF
    The transcription factor etsrp/Er71/Etv2 is a master control gene for vasculogenesis in all species studied to date. It is also required for hematopoiesis in zebrafish and mice. Several novel genes expressed in vasculature have been identified through transcriptional profiling of zebrafish embryos overexpressing etsrp by microarrays. Here we re-examined this transcriptional profile by Illumina RNA-sequencing technology, revealing a substantially increased number of candidate genes regulated by etsrp. Expression studies of 50 selected candidate genes from this dataset resulted in the identification of 39 new genes that are expressed in vascular cells. Regulation of these genes by etsrp was confirmed by their ectopic induction in etsrp overexpressing and decreased expression in etsrp deficient embryos. Our studies demonstrate the effectiveness of the RNA-sequencing technology to identify biologically relevant genes in zebrfish and produced a comprehensive profile of genes previously unexplored in vascular endothelial cell biology

    Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell-cell adhesion in normal human keratinocytes.

    No full text
    To achieve strong adhesion to their neighbors and sustain stress and tension, epithelial cells develop many different specialized adhesive structures. Breakdown of these structures occurs during tumor progression, with the development of a fibroblastic morphology characteristic of metastatic cells. During Ras transformation, Rac-signaling pathways participate in the disruption of cadherin-dependent adhesion. We show that sustained Rac activation per se is sufficient to disassemble cadherin-mediated contacts in keratinocytes, in a concentration- and time-dependent manner. Cadherin receptors are removed from junctions before integrin receptors, suggesting that pathways activated by Rac can specifically interfere with cadherin function. We mapped an important region for disruption of junctions to the putative second effector domain of the Rac protein. Interestingly, although this region overlaps the domain necessary to induce lamellipodia, we demonstrate that the disassembly of cadherin complexes is a new Rac activity, distinct from Rac-dependent lamellipodia formation. Because Rac activity is also necessary for migration, Rac is a good candidate to coordinately regulate cell-cell and cell-substratum adhesion during tumorigenesis

    The scaffold protein Ajuba suppresses CdGAP activity in epithelia to maintain stable cell-cell contacts

    No full text
    Levels of active Rac1 at epithelial junctions are partially modulated via interaction with Ajuba, an actin binding and scaffolding protein. Here we demonstrate that Ajuba interacts with the Cdc42 GTPase activating protein CdGAP, a GAP for Rac1 and Cdc42, at cell-cell contacts. CdGAP recruitment to junctions does not require Ajuba; rather Ajuba seems to control CdGAP residence at sites of cell-cell adhesion. CdGAP expression potently perturbs junctions and Ajuba binding inhibits CdGAP activity. Ajuba interacts with Rac1 and CdGAP via distinct domains and can potentially bring them in close proximity at junctions to facilitate activity regulation. Functionally, CdGAP-Ajuba interaction maintains junctional integrity in homeostasis and diseases: (i) gain-of-function CdGAP mutants found in Adams-Oliver Syndrome patients strongly destabilize cell-cell contacts and (ii) CdGAP mRNA levels are inversely correlated with E-cadherin protein expression in different cancers. We present conceptual insights on how Ajuba can integrate CdGAP binding and inactivation with the spatio-temporal regulation of Rac1 activity at junctions. Ajuba poses a novel mechanism due to its ability to bind to CdGAP and Rac1 via distinct domains and influence the activation status of both proteins. This functional interplay may contribute towards conserving the epithelial tissue architecture at steady-state and in different pathologies

    The Cdc42/Rac1 regulator CdGAP is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer.

    No full text
    The loss of E-cadherin causes dysfunction of the cell-cell junction machinery, which is an initial step in epithelial-to-mesenchymal transition (EMT), facilitating cancer cell invasion and the formation of metastases. A set of transcriptional repressors of E-cadherin (CDH1) gene expression, including Snail1, Snail2 and Zeb2 mediate E-cadherin downregulation in breast cancer. However, the molecular mechanisms underlying the control of E-cadherin expression in breast cancer progression remain largely unknown. Here, by using global gene expression approaches, we uncover a novel function for Cdc42 GTPase-activating protein (CdGAP) in the regulation of expression of genes involved in EMT. We found that CdGAP used its proline-rich domain to form a functional complex with Zeb2 to mediate the repression of E-cadherin expression in ErbB2-transformed breast cancer cells. Conversely, knockdown of CdGAP expression led to a decrease of the transcriptional repressors Snail1 and Zeb2, and this correlated with an increase in E-cadherin levels, restoration of cell-cell junctions, and epithelial-like morphological changes. In vivo, loss of CdGAP in ErbB2-transformed breast cancer cells impaired tumor growth and suppressed metastasis to lungs. Finally, CdGAP was highly expressed in basal-type breast cancer cells, and its strong expression correlated with poor prognosis in breast cancer patients. Together, these data support a previously unknown nuclear function for CdGAP where it cooperates in a GAP-independent manner with transcriptional repressors to function as a critical modulator of breast cancer through repression of E-cadherin transcription. Targeting Zeb2-CdGAP interactions may represent novel therapeutic opportunities for breast cancer treatment

    Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides

    No full text
    Sialylated glycolipids, gangliosides play an essential role in the central nervous system regulating recognition and signaling in neurons. Metabolic blocks in processing and catabolism of gangliosides result in development of severe neurological disorders, gangliosidoses manifesting with neurodegeneration and neuroinflammation. We demonstrate that two mammalian enzymes, neuraminidases 3 and 4 play important role in catabolic processing of brain gangliosides by cleaving terminal sialic acid residues in their glycan chains. In the neuraminidase 3-4 double knockout mice, GM3 ganglioside is stored in microglia, vascular pericytes and neurons, causing micro- and astrogliosis, neuroinflammation, accumulation of lipofuscin bodies and memory loss whereas their cortical and hippocampal neurons have lower rate of neuritogenesis in vitro. Double knockout mice also have reduced levels of GM1 ganglioside and myelin in neuronal axons. Besides, neuraminidase 3 deficiency drastically increased storage of GM2 in the brain tissues of the asymptomatic mouse model of the severe human gangliosidosis, Tay-Sachs disease indicating that this enzyme is responsible for the metabolic bypass of the β-hexosaminidase A deficiency. Together, our results provide the first in vivo evidence that neuraminidases 3 and 4 have important roles in CNS function by catabolizing gangliosides and preventing their storage in lipofuscin bodies

    Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides

    No full text
    Sialylated glycolipids, gangliosides play an essential role in the central nervous system regulating recognition and signaling in neurons. Metabolic blocks in processing and catabolism of gangliosides result in development of severe neurological disorders, gangliosidoses manifesting with neurodegeneration and neuroinflammation. We demonstrate that two mammalian enzymes, neuraminidases 3 and 4 play important role in catabolic processing of brain gangliosides by cleaving terminal sialic acid residues in their glycan chains. In the neuraminidase 3-4 double knockout mice, GM3 ganglioside is stored in microglia, vascular pericytes and neurons, causing micro- and astrogliosis, neuroinflammation, accumulation of lipofuscin bodies and memory loss whereas their cortical and hippocampal neurons have lower rate of neuritogenesis in vitro. Double knockout mice also have reduced levels of GM1 ganglioside and myelin in neuronal axons. Besides, neuraminidase 3 deficiency drastically increased storage of GM2 in the brain tissues of the asymptomatic mouse model of the severe human gangliosidosis, Tay-Sachs disease indicating that this enzyme is responsible for the metabolic bypass of the β-hexosaminidase A deficiency. Together, our results provide the first in vivo evidence that neuraminidases 3 and 4 have important roles in CNS function by catabolizing gangliosides and preventing their storage in lipofuscin bodies

    A point mutation in p190A RhoGAP affects ciliogenesis and leads to glomerulocystic kidney defects

    Get PDF
    Rho family GTPases act as molecular switches regulating actin cytoskeleton dynamics. Attenuation of their signaling capacity is provided by GTPase-activating proteins (GAPs), including p190A, that promote the intrinsic GTPase activity of Rho proteins. In the current study we have performed a small-scale ENU mutagenesis screen and identified a novel loss of function allele of the p190A gene Arhgap35, which introduces a Leu1396 to Gln substitution in the GAP domain. This results in decreased GAP activity for the prototypical Rho-family members, RhoA and Rac1, likely due to disrupted ordering of the Rho binding surface. Consequently, Arhgap35-deficient animals exhibit hypoplastic and glomerulocystic kidneys. Investigation into the cystic phenotype shows that p190A is required for appropriate primary cilium formation in renal nephrons. P190A specifically localizes to the base of the cilia to permit axoneme elongation, which requires a functional GAP domain. Pharmacological manipulations further reveal that inhibition of either Rho kinase (ROCK) or F-actin polymerization is able to rescue the ciliogenesis defects observed upon loss of p190A activity. We propose a model in which p190A acts as a modulator of Rho GTPases in a localized area around the cilia to permit the dynamic actin rearrangement required for cilia elongation. Together, our results establish an unexpected link between Rho GTPase regulation, ciliogenesis and glomerulocystic kidney disease

    Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP

    No full text
    Intersectin-s is a modular scaffolding protein regulating the formation of clathrin-coated vesicles. In addition to the Eps15 homology (EH) and Src homology 3 (SH3) domains of intersectin-s, the neuronal variant (intersectin-l) also has Dbl homology (DH), pleckstrin homology (PH) and C2 domains. We now show that intersectin-l functions through its DH domain as a guanine nucleotide exchange factor (GEF) for Cdc42. In cultured cells, expression of DH-domain-containing constructs cause actin rearrangements specific for Cdc42 activation. Moreover, in vivo studies reveal that stimulation of Cdc42 by intersectin-l accelerates actin assembly via N-WASP and the Arp2/3 complex. N-WASP binds directly to intersectin-l and upregulates its GEF activity, thereby generating GTP-bound Cdc42, a critical activator of N-WASP. These studies reveal a role for intersectin-l in a novel mechanism of N-WASP activation and in regulation of the actin cytoskeleton

    CdGAP is required for transforming growth factor β- and Neu/ErbB-2-induced breast cancer cell motility and invasion

    No full text
    RhoA, Rac1 and Cdc42, the best-characterized members of the Rho family of small GTPases, are critical regulators of many cellular activities. Cdc42 GTPase-activating protein (CdGAP) is a serine- and proline-rich RhoGAP protein showing GAP activity against both Cdc42 and Rac1 but not RhoA. CdGAP is phosphorylated downstream of the MEK-ERK (extracellular signal-regulated kinase) pathway in response to serum and is required for normal cell spreading and polarized lamellipodia formation. In this study, we found that CdGAP protein and mRNA levels are highly increased in mammary tumor explants expressing an activated Neu/ErbB-2 (Neu-NT) receptor. In response to transforming growth factor-β (TGFβ) stimulation, Neu-NT-expressing mammary tumor explants demonstrate a clear induction in cell motility and invasion. We show that downregulation of CdGAP expression by small interfering RNA abrogates the ability of TGFβ to induce cell motility and invasion of Neu-NT-expressing mammary tumor explants. However, it has no effect on TGFβ-mediated cell adhesion on type 1 collagen and fibronectin. Interestingly, protein expression of E-Cadherin is highly increased in Neu-NT-expressing mammary tumor explants depleted of CdGAP. In addition, complete loss of E-Cadherin expression is not observed in CdGAP-depleted cells during TGFβ-mediated epithelial to mesenchymal transition. Downregulation of the CdGAP expression also decreases cell proliferation of Neu-NT-expressing mammary tumor explants independently of TGFβ. Rescue analysis using re-expression of various CdGAP deletion-mutant proteins revealed that the proline-rich domain (PRD) but not the GAP domain of CdGAP is essential to mediate TGFβ-induced cell motility and invasion. Finally, we found that TGFβ induces the expression and phosphorylation of CdGAP in mammary epithelial NMuMG cells. Taken together, these studies identify CdGAP as a novel molecular target in TGFβ signaling and implicate CdGAP as an essential component in the synergistic interaction between TGFβ and Neu/ErbB-2 signaling pathways in breast cancer cells
    corecore