51 research outputs found

    Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study investigated the distribution of silver after 28 days repeated oral administration of silver nanoparticles (AgNPs) and silver acetate (AgAc) to rats. Oral administration is a relevant route of exposure because of the use of silver nanoparticles in products related to food and food contact materials.</p> <p>Results</p> <p>AgNPs were synthesized with a size distribution of 14 Âą 4 nm in diameter (90% of the nanoparticle volume) and stabilized in aqueous suspension by the polymer polyvinylpyrrolidone (PVP). The AgNPs remained stable throughout the duration of the 28-day oral toxicity study in rats. The organ distribution pattern of silver following administration of AgNPs and AgAc was similar. However the absolute silver concentrations in tissues were lower following oral exposure to AgNPs. This was in agreement with an indication of a higher fecal excretion following administration of AgNPs. Besides the intestinal system, the largest silver concentrations were detected in the liver and kidneys. Silver was also found in the lungs and brain. Autometallographic (AMG) staining revealed a similar cellular localization of silver in ileum, liver, and kidney tissue in rats exposed to AgNPs or AgAc.</p> <p>Using transmission electron microscopy (TEM), nanosized granules were detected in the ileum of animals exposed to AgNPs or AgAc and were mainly located in the basal lamina of the ileal epithelium and in lysosomes of macrophages within the lamina propria. Using energy dispersive x-ray spectroscopy it was shown that the granules in lysosomes consisted of silver, selenium, and sulfur for both AgNP and AgAc exposed rats. The diameter of the deposited granules was in the same size range as that of the administered AgNPs. No silver granules were detected by TEM in the liver.</p> <p>Conclusions</p> <p>The results of the present study demonstrate that the organ distribution of silver was similar when AgNPs or AgAc were administered orally to rats. The presence of silver granules containing selenium and sulfur in the intestinal wall of rats exposed to either of the silver forms suggests a common mechanism of their formation. Additional studies however, are needed to gain further insight into the underlying mechanisms of the granule formation, and to clarify whether AgNPs dissolve in the gastrointestinal system and/or become absorbed and translocate as intact nanoparticles to organs and tissues.</p

    Absorption, distribution, metabolism and excretion of selenium following oral administration of elemental selenium nanoparticles or selenite in rats

    Get PDF
    A suspension of nanoparticles of BSA-stabilized red amorphous elemental selenium (Se) or an aqueous solution of sodium selenite was repeatedly administered by oral gavage for 28 days at 0.05 mg/kg bw/day (low dose) or at 0.5 mg/kg bw/day (high dose) as Se to female rats. Prior to administration, the size distribution of the Se nanoparticles was characterized by dynamic light scattering and transmission electron microscopy, which showed that the particles’ mean diameter was 19 nm and ranged in size from 10-80 nm. Following administration of the high dose of Se nanoparticles or selenite the concentration of Se was determined by ICP-MS in liver, kidney, urine, feces, stomach, lungs, plasma at µg/g level and in brain and muscle tissue at sub-µg/g level. In order to test if any elemental Se was present in liver, kidney or feces, an in situ derivatization selective to elemental Se was made by treatment with sulfite, which resulted in formation of the selenosulfate anion. This Se species was selectively and quantitatively determined by anion exchange HPLC with ICP-MS detection. The results showed that elemental Se was present in the livers, kidneys and feces from animals exposed to low and high doses of elemental Se nanoparticles or to selenite, and was detected also in the same samples from control animals. The fraction of Se present as elemental Se in livers and kidneys from the high dose animals was significantly larger than the similar fraction in samples from the low dose animals or from the controls. This suggested that the natural metabolic pathways of Se were exhausted when given the high dose of elemental Se or selenite resulting in a non-metabolized pool of elemental Se. Both dosage forms of Se were bioavailable as demonstrated by the blood biomarker selenoprotein P, which was equally up-regulated in the high-dose animals for both dosage forms of Se. Finally, the excretion of Se in urine and its occurrence as Se-methylseleno-N-Acetyl-galactosamine and trimethylselenonium-ion demonstrated that both dosage forms were metabolized and excreted. The results of the study showed that both forms of Se were equally absorbed, distributed, metabolized and excreted, but the detailed mechanism of the fate of the administered elemental Se or selenite in the gastro-intestinal tract of rats remains unclear

    Nanoteknologi og Sundhed

    No full text

    Neurotoxicity of toluene and aromatic white spirit:a study of rat brain neurochemistry

    Get PDF
    • …
    corecore