139 research outputs found

    Using Mussel Isotope Ratios to Assess Anthropogenic Nitrogen Inputs to Freshwater Ecosystems

    Get PDF
    Stable nitrogen isotope ratios (δ15N) of freshwater mussels from a series of lakes and ponds were related to watershed land use characteristics to assess their utility in determining the source of nitrogen inputs to inland water bodies. Nitrogen isotope ratios measured in freshwater mussels from 19 lakes and ponds in Rhode Island, U.S.A., ranged from 4.9–12.6% and were found to significantly correlate with the fraction of residential development in 100 and 200 m buffer zones around the ponds. Mussel δ15N values in 12 of the 19 ponds also showed significant correlation with average dissolved nitrate concentrations, which ranged from 23–327 μg L-1. These observations, in light of previous studies which link elevated δ15N values of nitrogen derived from septic wastewater with those seen in biota, suggest that mussel isotope ratios may reflect nitrogen source in freshwater ecosystems. We followed an iterative approach using multiple regression analysis to assess the relationship between mussel δ15N and the land use categories fraction residential development, fraction feedlot agriculture, fraction row-crop agriculture, and fraction natural vegetation in 100 and 200 m buffer zones and pond watersheds. From this we developed a simple regression model to predict mussel δ15N from the fraction of residential development in the 200 m buffer zone around the pond. Subsequent testing with data from 16 additional sites in the same ecoregion led us to refine the model by incorporating the fraction of natural vegetation. The overall average absolute difference between measured and predicted δ15N values using the two-parameter model was 1.6%. Potential sources of error in the model include differences in the scale and categorization of land-use data used to generate and test the model, differences in physical characteristics, such as retention time and range of residential development, and exclusion of sources of enriched nitrogen such as runoff from feedlot operations or increased nitrogen loading from inefficient or failed septic systems

    Effects of acceleration on the collision of particles in the rotating black hole spacetime

    Full text link
    We study the collision of two geodesic particles in the accelerating and rotating black hole spacetime and probe the effects of the acceleration of black hole on the center-of-mass energy of the colliding particles and on the high-velocity collision belts. We find that the dependence of the center-of-mass energy on the acceleration in the near event-horizon collision is different from that in the near acceleration-horizon case. Moreover, the presence of the acceleration changes the shape and position of the high-velocity collision belts. Our results show that the acceleration of black holes brings richer physics for the collision of particles.Comment: 7 pages, 2 figures, The corrected version accepted for publication in EPJ

    Phonon thermal conductivity in doped La2CuO4\rm\bf La_2CuO_4: Relevant scattering mechanisms

    Full text link
    Results of in-plane and out-of-plane thermal conductivity measurements on La1.8xEu0.2SrxCuO4\rm La_{1.8-x}Eu_{0.2}Sr_xCuO_4 (0x0.20\leq x\leq0.2) single crystals are presented. The most characteristic features of the temperature dependence are a pronounced phonon peak at low temperatures and a steplike anomaly at TLTT_{LT}, i.e., at the transition to the low temperature tetragonal phase (LTT-phase), which gradually decrease with increasing Sr-content. Comparison of these findings with the thermal conductivity of La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4 and La2NiO4\rm La_2NiO_4 clearly reveals that in La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4 the most effective mechanism for phonon scattering is impurity-scattering (dopants), as well as scattering by soft phonons that are associated with the lattice instability in the low temperature orthorhombic phase (LTO-phase). There is no evidence that stripe correlations play a major role in suppressing the phonon peak in the thermal conductivity of La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4.Comment: 7 pages, 4 figure

    Prioritizing Stream Barrier Removal to Maximize Connected Aquatic Habitat and Minimize Water Scarcity

    Get PDF
    Instream barriers, such as dams, culverts, and diversions, alter hydrologic processes and aquatic habitat. Removing uneconomical and aging instream barriers is increasingly used for river restoration. Historically, selection of barrier removal projects used score‐and‐rank techniques, ignoring cumulative change and the spatial structure of stream networks. Likewise, most water supply models prioritize either human water uses or aquatic habitat, failing to incorporate both human and environmental water use benefits. Here, a dual‐objective optimization model identifies barriers to remove that maximize connected aquatic habitat and minimize water scarcity. Aquatic habitat is measured using monthly average streamflow, temperature, channel gradient, and geomorphic condition as indicators of aquatic habitat suitability. Water scarcity costs are minimized using economic penalty functions while a budget constraint specifies the money available to remove barriers. We demonstrate the approach using a case study in Utah\u27s Weber Basin to prioritize removal of instream barriers for Bonneville cutthroat trout, while maintaining human water uses. Removing 54 instream barriers reconnects about 160 km of quality‐weighted habitat and costs approximately US$10 M. After this point, the cost‐effectiveness of removing barriers to connect river habitat decreases. The modeling approach expands barrier removal optimization methods by explicitly including both economic and environmental water uses

    Gravitational Lensing and f(R) theories in the Palatini approach

    Full text link
    We investigate gravitational lensing in the Palatini approach to the f(R) extended theories of gravity. Starting from an exact solution of the f(R) field equations, which corresponds to the Schwarzschild-de Sitter metric and, on the basis of recent studies on this metric, we focus on some lensing observables, in order to evaluate the effects of the non linearity of the gravity Lagrangian. We give estimates for some astrophysical events, and show that these effects are tiny for galactic lenses, but become interesting for extragalactic ones.Comment: 7 Pages, RevTex, 1 eps figure; references added; revised to match the version accepted for publication in General Relativity and Gravitatio

    A Theory for High-TcT_c Superconductors Considering Inhomogeneous Charge Distribution

    Full text link
    We propose a general theory for the critical TcT_c and pseudogap TT^* temperature dependence on the doping concentration for high-TcT_c oxides, taking into account the charge inhomogeneities in the CuO2CuO_2 planes. The well measured experimental inhomogeneous charge density in a given compound is assumed to produce a spatial distribution of local ρ(r)\rho(r). These differences in the local charge concentration is assumed to yield insulator and metallic regions, possibly in a stripe morphology. In the metallic region, the inhomogeneous charge density yields also spatial distributions of superconducting critical temperatures Tc(r)T_c(r) and zero temperature gap Δ0(r)\Delta_0(r). For a given sample, the measured onset of vanishing gap temperature is identified as the pseudogap temperature, that is, TT^*, which is the maximum of all Tc(r)T_c(r). Below TT^*, due to the distribution of Tc(r)T_c(r)'s, there are some superconducting regions surrounded by insulator or metallic medium. The transition to a superconducting state corresponds to the percolation threshold among the superconducting regions with different Tc(r)T_c(r)'s. To model the charge inhomogeneities we use a double branched Poisson-Gaussian distribution. To make definite calculations and compare with the experimental results, we derive phase diagrams for the BSCO, LSCO and YBCO families, with a mean field theory for superconductivity using an extended Hubbard Hamiltonian. We show also that this novel approach provides new insights on several experimental features of high-TcT_c oxides.Comment: 7 pages, 5 eps figures, corrected typo

    Topological Charged Black Holes in High Dimensional Spacetimes and Their Formation from Gravitational Collapse of a Type II Fluid

    Full text link
    Topological charged black holes coupled with a cosmological constant in R2×XD2R^{2}\times X^{D-2} spacetimes are studied, where XD2X^{D-2} is an Einstein space of the form (D2)RAB=k(D3)hAB{}^{(D-2)}R_{AB} = k(D-3) h_{AB}. The global structure for the four-dimensional spacetimes with k=0k = 0 is investigated systematically. The most general solutions that represent a Type IIII fluid in such a high dimensional spacetime are found, and showed that topological charged black holes can be formed from the gravitational collapse of such a fluid. When the spacetime is (asymptotically) self-similar, the collapse always forms black holes for k=0,1k = 0, -1, in contrast to the case k=1k = 1, where it can form either balck holes or naked singularities.Comment: 14 figures, to appear in Phys. Rev.

    Vortex structure in d-density wave scenario of pseudogap

    Full text link
    We investigate the vortex structure assuming the d-density wave scenario of the pseudogap. We discuss the profiles of the order parameters in the vicinity of the vortex, effective vortex charge and the local density of states. We find a pronounced modification of these quantities when compared to a purely superconducting case. Results have been obtained for a clean system as well as in the presence of a nonmagnetic impurity. We show that the competition between superconductivity and the density wave may explain some experimental data recently obtained for high-temperature superconductors. In particular, we show that the d-density wave scenario explains the asymmetry of the gap observed in the vicinity of the vortex core.Comment: 8 pages, 10 figure

    A Study of the S=1/2 Alternating Chain using Multiprecision Methods

    Full text link
    In this paper we present results for the ground state and low-lying excitations of the S=1/2S=1/2 alternating Heisenberg antiferromagnetic chain. Our more conventional techniques include perturbation theory about the dimer limit and numerical diagonalization of systems of up to 28 spins. A novel application of multiple precision numerical diagonalization allows us to determine analytical perturbation series to high order; the results found using this approach include ninth-order perturbation series for the ground state energy and one magnon gap, which were previously known only to third order. We also give the fifth-order dispersion relation and third-order exclusive neutron scattering structure factor for one-magnon modes and numerical and analytical binding energies of S=0 and S=1 two-magnon bound states.Comment: 16 pages, 9 figures. for submission to Phys.Rev.B. PICT files of figs available at http://csep2.phy.ornl.gov/theory_group/people/barnes/barnes.htm
    corecore