22 research outputs found

    Memory Effects in the Dynamics of Open Quantum Systems

    Get PDF
    In this Thesis various aspects of memory effects in the dynamics of open quantum systems are studied. We develop a general theoretical framework for open quantum systems beyond the Markov approximation which allows us to investigate different sources of memory effects and to develop methods for harnessing them in order to realise controllable open quantum systems. In the first part of the Thesis a characterisation of non-Markovian dynamics in terms of information flow is developed and applied to study different sources of memory effects. Namely, we study nonlocal memory effects which arise due to initial correlations between two local environments and further the memory effects induced by initial correlations between the open system and the environment. The last part focuses on describing two all-optical experiment in which through selective preparation of the initial environment states the information flow between the system and the environment can be controlled. In the first experiment the system is driven from the Markovian to the non- Markovian regime and the degree of non-Markovianity is determined. In the second experiment we observe the nonlocal nature of the memory effects and provide a novel method to experimentally quantify frequency correlations in photonic environments via polarisation measurements.Siirretty Doriast

    Non-Markovian dynamics in open quantum systems

    Get PDF
    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry and quantum information. In close analogy to a classical Markov process, the interaction of an open quantum system with a noisy environment is often modelled by a dynamical semigroup with a generator in Lindblad form, which describes a memoryless dynamics leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence and correlations. Here, recent results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of memory effects. The general theory is illustrated by a series of examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This article further explores the various physical sources of non-Markovian quantum dynamics, such as structured spectral densities, nonlocal correlations between environmental degrees of freedom and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments on the detection, quantification and control of non-Markovian quantum dynamics are also discussed.Comment: 26 pages, 10 figure

    Problem of coherent control in non-Markovian open quantum systems

    Get PDF
    We critically evaluate the most widespread assumption in the theoretical description of coherent control strategies for open quantum systems. We show that, for non-Markovian open systems dynamics, this fixed-dissipator assumption leads to a serious pitfall generally causing difficulties in the effective modeling of the controlled system. We show that at present, to avoid these problems, a full microscopic description of the controlled system in the presence of noise may often be necessary. We illustrate our findings with a paradigmatic example.</p

    Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems

    Full text link
    We construct a general measure for the degree of non-Markovian behavior in open quantum systems. This measure is based on the trace distance which quantifies the distinguishability of quantum states. It represents a functional of the dynamical map describing the time evolution of physical states, and can be interpreted in terms of the information flow between the open system and its environment. The measure takes on nonzero values whenever there is a flow of information from the environment back to the open system, which is the key feature of non-Markovian dynamics.Comment: 4 pages, 2 figures, published versio

    Dynamics of incompatibility of quantum measurements in open systems

    Get PDF
    The non-classical nature of quantum states, often illustrated using entanglement measures or quantum discord, constitutes a resource for quantum information protocols. However, the non-classicality of a quantum system cannot be encapsulated as a property of the state alone, as the set of available measurements used to extract information on the system is typically restricted. In this work we study how the non-classicality of quantum measurements, quantified via their incompatibility, is influenced by quantum noise and, further, how a non-Markovian environment may help us in maintaining the measurement resources.Comment: v2: presentation improved and typos correcte

    Nonlocal memory assisted entanglement distribution in optical fibers

    Full text link
    Successful implementation of several quantum information and communication protocols require distributing entangled pairs of quantum bits in reliable manner. While there exists a substantial amount of recent theoretical and experimental activities dealing with non-Markovian quantum dynamics, experimental application and verification of the usefulness of memory-effects for quantum information tasks is still missing. We combine these two aspects and show experimentally that a recently introduced concept of nonlocal memory effects allows to protect and distribute polarization entangled pairs of photons in efficient manner within polarization-maintaining (PM) optical fibers. The introduced scheme is based on correlating the environments, i.e. frequencies of the polarization entangled photons, before their physical distribution. When comparing to the case without nonlocal memory effects, we demonstrate at least 12-fold improvement in the channel, or fiber length, for preserving the highly-entangled initial polarization states of photons against dephasing
    corecore