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Dynamics of incompatibility of quantum measurements in open systems
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The nonclassical nature of quantum states, often illustrated using entanglement measures or quantum discord,
constitutes a resource for quantum information protocols. However, the nonclassicality of a quantum system
cannot be seen as a property of the state alone, as the set of available measurements used to extract information
on the system is typically restricted. In this work we study how the nonclassicality of quantum measurements,
quantified via their incompatibility, is influenced by quantum noise and how a non-Markovian environment can
be useful for maintaining the measurement resources.

DOI: 10.1103/PhysRevA.93.022114

I. INTRODUCTION

The nonclassical nature of quantum states is considered to
be an essential resource for the emerging quantum technolo-
gies. This idea is well established in the context of entangle-
ment theory [1], and has also been formulated generally in
the framework of quantum resource theories [2,3]. However,
characterizing the nonclassicality of a quantum system as a
property of the state alone has limited practical significance,
since the set of available measurements used to extract
information on the system is almost always restricted by exper-
imental limitations. Accordingly, measurement resources are
expected to play a significant role in realistic quantum devices.

The study of measurement resources is motivated also
from a fundamental point of view. As shown in Ref. [4]
there exist entangled states which nevertheless cannot be
used to produce quantum correlations in any Bell experi-
ment because of the existence of a specific hidden variable
model for the correlations. For certain scenarios based on
correlation experiments, the existence of such a classical
description is equivalent to joint measurability of suitable
observables. In particular, it has been recently shown that for
the Clauser-Horne-Shimony-Holt (CHSH)-Bell inequality [5]
and Einstein-Podolsky-Rosen (EPR)-steering scenarios [6–9],
the appropriate quantum resource can be formulated in terms
of incompatibility of the available local observables. It is
therefore important to aim for a better understanding of the
incompatibility of observables.

Since every real quantum system interacts with its envi-
ronment [10,11], a practical implementation of any quantum
protocol has to take the possible effects of noise into account.
The dynamical behavior of nonclassical features of quantum
states has been extensively studied in recent years. Specifically,
understanding dynamical phenomena such as entanglement
sudden death [12] or frozen discord [13] has been useful
for determining the level of isolation from the environment
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required to implement protocols relying on these quantum
features.

In order to investigate the dynamical loss of measurement
resources, we need an approach somewhat different from the
conventional state-centered view: Decoherence and dissipa-
tion now take place in the Heisenberg picture, rendering the
measurements less useful for revealing nonclassical properties.
In fact, consider the general setting consisting of preparation
of an entangled state shared by Alice and Bob, followed by
noisy local evolution (quantum channel) on Alice’s side, and
local measurements performed by Alice and Bob at the end.
In this setting, one would usually write the associated joint
probabilities in the Schrödinger picture, with the local noise
inducing loss of entanglement on the state. However, we can
equivalently use the Heisenberg picture, acting on Alice’s
measurements.

An essential starting point for our investigation is the
fact that incompatibility can never be created but is often
destroyed by the action of a quantum channel [14]. How
exactly this so-called measurement decoherence takes place
during actual open system dynamics has not been investigated
before and the purpose of this paper is to take the first step
in this direction by performing a quantitative analysis of
the dynamical evolution of incompatibility. We concentrate
on two well-known microscopic open system models, where
the dynamics can be tailored via environment engineering
techniques: the phase damping [15] and amplitude damping
[10] evolutions under both Markovian and non-Markovian
noise. We find that both evolutions exhibit sudden death
of incompatibility of quantum measurements, even though
no entanglement sudden death occurs. We further study the
case of a highly engineered amplitude damping dynamics,
given by a photonic band-gap environment, which has been
found to efficiently protect entanglement in the long time
limit [16]. We find that even for such a highly engineered
scenario the incompatibility of relevant measurements cannot
be maintained. This demonstrates that incompatibility is
more fragile than entanglement, which is in line with the
recently observed fact that an entanglement breaking channel
is incompatibility breaking, but not vice versa [14,17].

The structure of the paper is as follows. In Sec. II we review
general features of quantum incompatibility, as well as the
specific quantification introduced in Ref. [18]. In Sec. III we
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motivate the following sections by a simple classical noise
model. In Sec. IV we proceed to describe incompatibility under
quantum dynamical noise, and in Sec. V we introduce the
microscopic open system models under consideration. The
numerical results are presented and discussed in Sec. VI, and
we conclude the paper in Sec. VII.

II. QUANTUM INCOMPATIBILITY

A. Definition of incompatibility and its quantification

We first recall that a general quantum measurement is
described by a positive operator valued measure (POVM),
which (assuming a finite set of measurement outcomes)
is a map E : i �→ Ei assigning a positive operator Ei to
each outcome i and satisfying the normalization condition∑

i Ei = 1. Two measurements E and F are compatible or
jointly measurable if there exists a measurement G = (Gij )
such that Ei = ∑

j Gij and Fj = ∑
i Gij . Intuitively, this

means that the measurements can be realized together with
a single device. The definition extends naturally to collections
containing more than two measurements. For the purposes of
the present investigation, however, studying the evolution pairs
is sufficient. If the measurements are not compatible, they are
said to be incompatible. In this case they can potentially be
used for producing nonclassical features, as discussed in the
introduction.

In order to quantify incompatibility, some of the authors
of this paper recently introduced [18] the concept of a incom-
patibility monotone as a function I on pairs of observables,
required to satisfy the following conditions:

(i) I(E,F ) = 0 if and only if E and F are compatible.
(ii) I(�(E),�(F )) � I(E,F ) if � is any channel.
The channel � in condition (ii) can be either a quantum

channel applied before the measurement or a classical channel
applied on the measurement outcomes. This definition of
an incompatibility monotone is analogous to entanglement
monotones [1].

In order to define an explicit quantification satisfying the
above conditions, one can use [18] the general resource-
theoretic notion of noise robustness [2,19–23]. Basically the
idea is to use classical selection noise as a reference. In
our case, this can be operationally implemented as follows:
We think of implementing a measurement E using a noisy
device which sometimes (with probability λ) ignores the actual
outcome and instead outputs randomly an outcome i according
to some fixed probability distribution p = (pi). The POVM
Eλ,p describing the resulting deformed measurement is then

E
λ,p

i = (1 − λ)Ei + λpi1, (1)

and for a given pair (E,F ) of measurements, we look for
the minimal value of λ for which the noise-deformed pair
(Eλ,p,F λ,p) becomes compatible:

Ip(E,F ) := inf{λ > 0 | (Eλ,p,F λ,p)compatible}. (2)

It is easy to see that this function fulfils the properties (i) and
(ii) of an incompatibility monotone, and we also know that
λ � 1/2 [23]. There are also other choices for incompatibility
monotones, of which we have included a brief discussion in
Sec. VII.

B. Incompatibility in a qubit system

In this paper we focus exclusively on single-qubit systems
for which the optimization (2) can be reduced to solving a
single polynomial equation (see discussion in Ref. [18]). In
order to describe this, we first need to recall the representation
of qubit measurements.

Binary POVMs have only two outcomes, 0 and 1. Due to
the normalization, we have E0 = 1 − E1, so that the operator
0 � E1 � 1 in fact specifies the POVM completely. In a qubit
system we can then write E1 in terms of its Bloch four-vector
x = (x0,x1,x2,x3) ≡ (x0,x):

E1 = 1
2 (x01 + x · σ ) , (3)

where σ = (σ1,σ2,σ3) and σj ’s are the usual Pauli matrices.
The Bloch vector for the other POVM element E0 is given
by x⊥ := (2 − x0, − x). The condition 0 � E1 � 1 can be
compactly expressed by x,x⊥ ∈ F+, where

F+ = {x | 〈x|x〉 � 0, x0 � 0} (4)

and

〈x|y〉 := x0y0 −
3∑

i=1

xiyi (5)

is the Minkowski scalar product. To summarize, a binary
measurement in a qubit system is specified by a single
four-vector x satisfying x,x⊥ ∈ F+.

In general, deciding whether a pair of measurements is
compatible requires solving a convex optimisation problem. In
a qubit system, the problem simplifies considerably [24] (see
also Refs. [25,26]): Two measurements, specified by Bloch
vectors x and y, are compatible if and only if

C(x,y) � 0 ,

where

C(x,y) := [〈x|x〉〈x⊥|x⊥〉〈y|y〉〈y⊥|y⊥〉]1/2 − 〈x|x⊥〉〈y|y⊥〉
+ 〈x|y⊥〉〈x⊥|y〉 + 〈x|y〉〈x⊥|y⊥〉.

Given any two measurements with Bloch vectors x and y,
we can now write down the formula for the noise-robustness-
based quantification (2) of their incompatibility. Since we only
have two outcomes, the classical noise distribution p is written
conveniently in terms of the bias parameter −1 � b � 1:

p1 = 1
2 (1 + b), p0 = 1

2 (1 − b) . (6)

Hence, the noise deformation (1) transforms a given Bloch
vector x as

x �→ Nλ,b(x) := [(1 − λ)x0 + λ(1 + b),(1 − λ)x],

so the incompatibility quantification for a pair (x,y) is given
by

Ib(x,y) := inf{λ > 0 | C[Nλ,b(x), Nλ,b(y)] � 0}. (7)

Since Ib(x,y) � 1/2, and given that x and y are incompatible,
we know that λ �→ C[Nλ,b(x), Nλ,b(y)] changes sign at exactly
one point on the interval [0,1/2], and this point is Ib(x,y). This
value can be easily determined numerically for any given pair
x,y, as a root of a polynomial equation.
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We close this section by recalling an alternative operational
interpretation of the number Ib(x,y) for the case b = 0. In
fact, it coincides with the maximal violation of the CHSH-Bell
inequality achievable with Alice’s measurements fixed to be x

and y [18].

III. INCOMPATIBILITY UNDER CLASSICAL NOISE

In order to illustrate the relationship between entanglement
and incompatibility in noisy systems, it is helpful to begin with
a simple case where the noise is purely classical, obtained by
mixing with a completely depolarizing noise. This is a variant
of the selection noise used already in the preceding section
to define the incompatibility quantification and appears in the
construction of the well-known isotropic states [1]

�s = (1 − s)|�0〉〈�0| + s1/d2, 0 � s � 1, (8)

where �0 is a maximally entangled state of a bipartite system.
The parameter t describes classical random selection noise
added to the maximally entangled state, and one can show
that the state loses its entanglement at some critical value
s = sentangled, remaining separable for s > sentangled. However,
the state loses its nonclassicality already before, in the sense
that after some s = squantum < sentangled a hidden state model
[4,9] exists for any bipartite correlations of the form

Ps(i,j |a,b) = tr
[
�sA

a
i ⊗ Bb

j

]
, (9)

where A1, . . . ,An and B1, . . . ,Bm are local measurements
accessible to the two parties Alice and Bob, respectively.
Hidden state models are specific hidden variable models for
which the correlations Ps(i,j |a,b) do not violate any Bell
inequality. Moreover, the nonexistence of such a model is
equivalent to the possibility of EPR steering [9], which has
practical applications to, e.g., one-sided secure quantum key
distribution (QKD) and subchannel discrimination [27,28].

For a fixed state, the quantum resource for steering can be
entirely associated with measurements. In order to see this, we
first write

�s = (�∗
s ⊗ 1)(|�0〉〈�0|), (10)

where the effect of the classical noise is described by a local
quantum channel �s = (1 − s)Id + s1/d and �∗

s denotes the
Schrödinger picture. Now, since the noise and measurements
are both local, it makes more sense to use the Heisenberg
picture:

Ps(i,j |a,b) = 〈�0

∣∣�s

(
Aa

i

) ⊗ Bb
j �0

〉 = tr
[
�s

(
Aa

i

)ᵀ
Bb

j

]
.

(11)

Here, the state �0 is maximally entangled, the transpose is
taken in the associated basis, and we observe that the effect
of noise is entirely captured by its action on Alice’s measure-
ments. One should notice the following important observation
[6,8,14]: The nonexistence of the hidden state model for the
correlations P(i,j |a,b) is equivalent to incompatibility of
Alice’s noisy local observables

�s(A
a), a = 1, . . . ,n . (12)

In particular, this means that the observables �s(Aa) lose their
incompatibility at the amount of noise s = squantum where the

hidden state model comes into existence. For s < squantum, the
measurements have some degree of incompatibility, which can
be quantified as described in the preceding section. In the next
section, we proceed to investigate this loss of incompatibility
under more complicated quantum noise channels arising from
dynamical interaction with a quantum environment.

IV. INCOMPATIBILITY UNDER QUANTUM
DYNAMICAL NOISE

Evolution of an open quantum system can be described
by a family (�t ) of quantum channels indexed by the time
parameter t � 0. This map is typically obtained by assuming
unitary dynamics t �→ Ut on a total system consisting also of
an environment, initialized in a given state σenv. In fact, given
that the system is initially (time zero) prepared in a state �,
and measured at time t via a POVM (Ej ), the probability for
the outcome j is given by

tr[��t (Ej )] := tr[Ut (� ⊗ σenv)U ∗
t (Ej ⊗ 1env)]. (13)

This determines a family of completely positive unital maps
�t acting on the observable algebra of the system, describing
the evolution in the Heisenberg picture. That is, [�t (Ej )] is the
POVM describing the measurement (Ej ) performed at time t ,
from the point of view of the initial state �.

A. Dynamics of incompatibility

The properties of the measurements may crucially change
depending on the point in time at which the measurements are
performed. In particular, incompatibility, as quantified by any
incompatibility monotone I, becomes a function of time:

t �→ I[�t (E),�t (F )]. (14)

As a motivating starting point for our investigation, a few
general remarks can be made concerning the case where
t �→ �t is a continuous semigroup, i.e.,

�t+t ′ = �t [�t ′ (·)]. (15)

In this case it follows directly from the general properties
(i) and (ii) of an incompatibility monotone that the function
(14) is nonincreasing. Furthermore (assuming finite system
dimension), in a generic (ergodic) case there exists a unique
stationary state �s , such that

lim
t→∞ �t (·) = tr[�s(·)]1, (16)

which implies that at the limit, every measurement is trivial.
Hence one expects that the incompatibility function (14) will
eventually decrease to zero under the assumption (15).

The purpose of the present paper is to study the behavior of
the function (14) for certain concrete choices of the dynamical
map �t on two-level systems, using the incompatibility
monotone (7). More general scenarios could easily be handled
with more numerical effort. However, the two-level system
already exhibits the relevant phenomena to the extent sufficient
for the illustrative purposes of the present paper. We represent
a given dynamical map t �→ �t in the Heisenberg picture,
and then compute the associated evolution t �→ �t (E) for any
given measurement E, in terms of its Bloch vector x(t), where
x(0) specifies the initial operator E1.
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The dynamical maps considered in this paper act in the
Schrödinger picture on a matrix T = [Tij ] as(

T00 T01

T10 T11

)
�→

(
a(t)T00 c(t)T01

c(t)∗T10 T11 + [1 − a(t)]T00

)
, (17)

where a(t) and c(t) are explicit functions of time t . The
Heisenberg representation of this evolution is determined by
the equation

tr[�∗
t (T )S] = tr[T �t (S)] , (18)

where T and S are arbitrary two-by-two matrices. Fixing S =
1
2 (x01 + x · σ ) corresponding to an initial Bloch vector x =
(x0,x), we then find the Bloch vector x(t) of �t (S) via

x0(t) = tr[�∗
t (1) S], xi(t) = tr[�∗

t (σi) S], (19)

so that

x0(t) = x0 + (a(t) − 1)x3,

x1(t) = Re[c(t)]x1 − Im[c(t)]x2,

x2(t) = Im[c(t)]x1 + Re[c(t)]x2,

x3(t) = a(t)x3.

Given two initial vectors x and y, the incompatibility evolution

t �→ Ib[x(t),y(t)] (20)

can then be computed as explained in Sec. II B.
Throughout the calculations, if not mentioned otherwise,

the initial measurement pair is chosen as the specific maxi-
mally incompatible pair with x0 = y0 = 1, x1 = y2 = 1, x2 =
y1 = 0 and x3 = y3 = 0 (denoted P1). We also study the
case x0 = y0 = 1, x1 = y3 = 1, x2 = y2 = 0 and x3 = y1 = 0
(denoted P2). Furthermore, we have set the bias parameter
b = 0. More general measurements could be considered in
a similar fashion. However, these two cases already exhibit
several interesting phenomena, as we will see below.

B. Comparison with entanglement dynamics

It was shown in Sec. III that incompatibility and entangle-
ment can be compared in a bipartite scenario involving local
measurements and a shared state. More specifically, we look
at the scenario from the point of view of one party, say, Alice,
and compare the incompatibility of her measurements with the
entanglement of the shared state. Bob’s measurements do not
play a role in this setting. We remark that such asymmetry
appears naturally in one-sided protocols such as steering [9]
mentioned in the introduction.

Accordingly, we take an ancillary qubit (in addition to our
open qubit system described above), and set the initial state
of the combined system to be the maximally entangled state
�0 = 1√

2
(|00〉 + |11〉). We stress that this specific choice is

not crucial, since the connection between incompatibility and
entanglement holds for any bipartite state [29]. Analogous to
Eq. (10), we then consider the evolved state

�t = (�∗
t ⊗ Id)(|�0〉〈�0|), (21)

where �∗
t is now the local noise channel of the form (17).

According to the discussion in Sec. III, loss of incom-
patibility of any set of Heisenberg-evolved local observables

can now be compared with the loss of entanglement of the
state �t . In particular, we know from the general argument
that incompatibility is lost before entanglement. In order to
compare finer details of the respective dynamics, we need to
choose some quantification also for entanglement of �t , and
in our investigation we will use concurrence [30]; this has the
advantage of connecting our work with the extensive existing
literature on entanglement dynamics. Moreover, we would like
to note that for the models considered here, the entanglement
dynamics happens to be equivalent to the dynamics of the
information flux [31], the nonmonotonicity of which indicates
the non-Markovian character of the dynamics.

A straightforward calculation shows that the matrix of the
evolved state �t has nonzero elements only in the diagonal
and antidiagonal entries. Thus, the concurrence E(�t ) has the
simple form [32]

E(�t ) = 2 max {0,K1(�t ),K2(�t )}, (22)

with

K1(�t ) = | 〈00| �t |11〉 | −
√

〈10| �t |10〉 〈01| �t |01〉
K2(�t ) = | 〈01| �t |10〉 | −

√
〈00| �t |00〉 〈11| �t |11〉,

leading to

E(�t ) = |c(t)| . (23)

V. DESCRIPTION OF THE DYNAMICS

We now describe the two different choices for the dynamical
map in detail, including examples of physically relevant
scenarios.

A. Phase damping dynamics

Let us first consider a dephasing model, involving only
decoherence without dissipation. This type of evolution can
be experimentally implemented, for instance, in an optical
setup [33], where the environment can be easily tuned so
as to produce a variety of dynamics both in the Markovian
and non-Markovian regimes. In fact, the time evolution of a
photon traveling in a quartz plate may be described by a unitary
operator U (t) defined by

U (t)|λ〉 ⊗ |ω〉 = einλωt |λ〉 ⊗ |ω〉, (24)

where nλ represents the refraction index for light with polar-
ization λ = H,V . The presence of the quartz plate thus leads
to the decoherence of the superpositions of polarization states,
due to the nonzero difference �n = nV − nH in the refraction
indices of horizontally and vertically polarized photons. The
corresponding dynamical map �∗

t in the Schrödinger picture
takes the form (17) with

a(t) = 1 , c(t) = κ(t) , (25)

and the decoherence function κ(t) is given by the Fourier
transform of the frequency distribution of the photon,

κ(t) =
∫

dω|f (ω)|2eiω�nt . (26)

The frequency distribution is modified in the experiment via
variation of the tilting angle of an Fabry-Pérot cavity inserted
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in the path of the photon [33]. All such frequency distributions
are very well approximated by a sum of two Gaussians centered
at frequencies ωk with amplitudes Ak and equal widths σ . This
yields

κ(t) = 1

1 + A
e− 1

2 σ 2t2
(e−iω1t + Ae−iω2t ) (27)

where A1 = 1
1+A

, A2 = A
1+A

, and �ω = ω2 − ω1. The tilting
angle of the cavity is relatively small and thus the distance �ω

between the peaks remains approximately constant.

B. Amplitude damping dynamics

Let us now consider a case where the interaction between
the quantum system and its environment also exhibits energy
exchange, that is, the interaction is dissipative. We look
at a microscopic Hamiltonian model describing a two-state
system interacting with a bosonic quantum reservoir at zero
temperature given by [10]

H = ωoσz +
∑

k

ωka
†
kak +

∑
k

(gkakσ+ + g∗
k a

†
kσ−). (28)

As usual, σ± are standard raising and lowering operators
respectively. The dynamics of a single amplitude damped qubit
is captured by the time-local master equation:

d�t

dt
= γ (t)

[
σ−�tσ+ − 1

2
{σ+σ−,�t }

]
, (29)

where σ± are the spin lowering and rising operators. The
resulting map �∗

t can then be written in the form (17) with

a(t) = |G(t)|2 , c(t) = G(t) , (30)

where

γ (t) = −2Re
Ġ(t)

G(t)
, (31)

the function G(t) depending on the reservoir spectral density.
For a qubit interacting resonantly with a leaky cavity, the
spectral density has a Lorentzian shape, i.e.,

J (ω) = γMλ2/2π [(ω − ω0)2 + λ2]. (32)

In this case, the function G(t) takes the form

GL(t) = e−λt/2

[
cosh

(√
1 − 2r

λt

2

)

+ 1√
1 − 2r

sinh

(√
1 − 2r

λt

2

)]
(33)

with r = γM/λ. For the photonic band-gap model (PBG) [34],
we have instead

GP (t) = 2v1b1e
βb2

1+i�P t + v2(b2 + |b2|)eβb2
2 t+i�P t

−
3∑

j=1

vj |bj |
[
1 − 

(√
βb2

j t
)]

eβb2
j t+i�P t , (34)

where �P = ω̃0 − ωe is the detuning from the band-gap edge
frequency ωe, set to equal zero as we consider only the resonant
case, and  is the error function, whose series and asymptotic

representations are given in Ref. [35], and

b1 = (A+ + A−)ei(π/4),

b2 = (A+e−i(π/6) − A−ei(π/6))e−i(π/4), (35)

b3 = (A+ei(π/6) − A−e−i(π/6))ei(3π/4),

A± =
[

1

2
± 1

2

(
1 + 4

27

�3
P

β3

)1/2]1/3

, (36)

v1 = x1

(b1 − b2)(b1 − b3)
, (37)

v2 = b2

(b2 − b1)(b2 − b3)
, (38)

β3/2 = ω̃
7/2
0 d2/6πε0�c3. (39)

The coefficient β is defined as the characteristic frequency, ε0

is the Coulomb constant, d is the atomic dipole moment, and
z = �P /β.

VI. RESULTS AND DISCUSSION

In this section we study the dynamics of incompatibility
for the different physically relevant dynamical processes
specified in the previous section. We are especially interested
in comparing the dynamics of incompatibility with that of
entanglement, so as to detect the fundamental differences
between these quantum resources. In particular, we investigate
the expected difference between the time scales of the sudden
death of entanglement and incompatibility.

A. Sudden death of incompatibility for Markovian dynamics

Let us first study the dynamics of incompatibility for the
case of Markovian dynamics, using the models presented
above. For the models considered here we are in the Markovian
regime as long as the entanglement is a monotonically decreas-
ing function. In Fig. 1 we have plotted the incompatibility
for two initial measurement pairs and entanglement of the
initial maximally entangled state for the dephasing dynamics.
We observe that the incompatibility is extremely fragile

FIG. 1. The evolution of entanglement entanglement in terms of
concurrence E (black squares), and the incompatibility measure Ib=0

for the dephasing evolution with Markovian parameters, A = 0 and
�ω = 2σ . Incompatibility is represented by two initial pairs P1 (red
circles) and P2 (blue stars).
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FIG. 2. The evolution of entanglement in terms of concurrence
E (black squares), and the incompatibility measure Ib=0 for the
amplitude damping dynamics with Lorentzian spectrum and r = 0.2.
Incompatibility is represented by two initial pairs P1 (red circles) and
P2 (blue stars).

under noise. Indeed, entanglement decreases asymptotically
towards zero, but incompatibility reaches zero far before the
entanglement has vanished. Naturally, for the phase-damping
evolution, the incompatibility of the measurements in the
z direction (initial pair P2) is better preserved. The phase
damping dynamics does not have a unique fixed point, and
hence the the measurement in the z direction does not
evolve towards a trivial measurement. However, the pair P1

experiences a sudden death of incompatibility at an early stage
of the evolution.

In Fig. 2 we have plotted the incompatibility and concur-
rence for the Markovian amplitude damping dynamics. We
observe the same behavior as for the dephasing dynamics:
a sudden death of incompatibility even with a fairly small
amount of noise. For the amplitude damping case, also the
initial pair P2 exhibits a sudden death of incompatibility.

B. Dynamics of incompatibility for non-Markovian dynamics

As we saw in the previous section, incompatibility is very
fragile under Markovian noise. However, quantum features of
a system may often be recovered if the environment is tuned
such that the dynamics exhibits non-Markovian behavior [36].
Hence, in this section we study the dynamics of incompatibility
under non-Markovian noise and analyze to what extent the
quantumness of measurements can be recovered in this case.

In Fig. 3 we have plotted the evolution of the incompatibility
and entanglement for the phase-damping dynamics in the
non-Markovian case. We observe that even with an environ-
ment exhibiting considerable non-Markovian character, the
incompatibility cannot be very well recovered [Fig. 3(i)].
Naturally, for the phase-damping case, the measurement pair
with the z-direction measurement is again less fragile. We
observe that even though a significant portion of entanglement
can be recovered, the incompatibility remains absent. When
non-Markovianity is increased to the extent that entanglement
can be fully recovered, also the incompatibility appears to
reach again its maximum value.

For the amplitude damping evolution (Fig. 4) we ob-
serve that even with highly non-Markovian dynamics, the

FIG. 3. The evolution of the entanglement in terms of concur-
rence E (black squares), and the incompatibility measure Ib=0 for the
phase damping dynamics with A = 1 and �ω equal to (i) 4σ , (ii) 8σ ,
(iii) 12σ , and (iv) 16σ . Incompatibility is represented by two initial
pairs P1 (red circles) and P2 (blue stars).

incompatibility remains zero or at relatively small values and
cannot be fully recovered.

We then proceed to consider a highly engineered environ-
ment, where a photonic band gap (PBG) tunes the dynamics
such that as the non-Markovianity increases, and the initial
entanglement can be very well protected. In Fig. 5 we plot the
entanglement and incompatibility dynamics for this model,
observing that even in the case where entanglement can be
well protected [Fig. 5(ii)] the incompatibility experiences a
sudden death without recovery. Naturally, if the entanglement
is fully maintained also the incompatibility persists.

FIG. 4. The evolution of the entanglement in terms of concur-
rence E (black squares), and the incompatibility measure Ib=0, for the
amplitude damping dynamics with Lorentzian spectrum and r = 50,
80, 100, and 150. Incompatibility is represented by two initial pairs
P1 (red circles) and P2 (blue stars).
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FIG. 5. The evolution of the entanglement in terms of concur-
rence E (black squares), and the incompatibility measure Ib=0, for
the amplitude damped dynamics with PBG spectral density and z = 1,
0, −5, and −10. Incompatiblity is represented the two initial pairs P1

(red circles) and P2 (blue stars).

VII. CONCLUSIONS

Since the discovery that quantum phenomena can be
harnessed as resources for computation and communication, a
considerable effort has been made towards understanding how
to protect quantum systems from the effects of noise. The basic
understanding is that quantum properties tend to get destroyed
as the system interacts with an environment, and hence exten-
sive quantitative studies on the behavior of quantum resources
such as entanglement and discord under noisy dynamics
have been undertaken. However, a definite understanding of
the essence of quantum resources remains elusive, as the
relevant quantifications crucially depend on the application
at hand. In contrast to the usual viewpoint where quantum
resources are associated exclusively to states, we emphasize
that nonclassicality may also be attributed to measurements
used to extract information on the quantum system. This
becomes especially relevant in practical scenarios where the set
of available measurements is strongly limited by experimental
constraints. Thus, it is crucial to study how the quantum
properties of the measurements are influenced by noise.

In this paper, we investigated the evolution of incom-
patibility of a pair of quantum measurements under two
commonly studied dynamical maps, dephasing (in the z

direction) and amplitude damping. While these hardly exhaust
the collection of physically relevant two-level dynamics, they
already represent different basic aspects of lossy quantum
dynamics, with dephasing consisting of pure decoherence, and
amplitude damping including also dissipation. More general
treatment will be a topic of future work.

Our starting point was the general result on incompati-
bility breaking channels [14], which says that sudden death

of initially maximal entanglement always implies sudden
death of all incompatibility, while the converse is not true.
We investigated this phenomenon in the specific physically
relevant settings. In particular, we found that, indeed, even in
the absence of sudden death of entanglement, a sudden death
of incompatibility often occurs. Incompatibility is known to
be a crucial resource for many quantum protocols for which
entanglement is not sufficient. Thus, it is possible that even
in the absence of entanglement sudden death the relevant
quantum resource may have been already destroyed.

We also studied how non-Markovian dynamics allows
one to recover incompatibility. We found that in many cases
where a significant portion of entanglement can be recovered,
incompatibility cannot. Thus, non-Markovian dynamics
may not be able to recover all quantum resources, even if
entanglement is recovered. We believe that this study will
be useful for developing a more resource-oriented view of
non-Markovian dynamics.

In contrast to concurrence and other entanglement mea-
sures, our choice of the incompatibility measure depends on
the initial measurements; we demonstrated the dependence
by using two different initial measurement pairs. This ba-
sis dependence is actually motivated by the fact that the
relevant applications mentioned above (i.e., CHSH-Bell and
steering scenarios) specifically involve a restricted selection
of measurements. In this sense, evolution of incompatibility
should be seen as a purpose-oriented view to decoherence.
For instance, we could quantify noise robustness of a steering-
based key distribution protocol by incompatibility. Concerning
our specific choice of the incompatibility measure [18], there
are alternatives, such as incompatibility weight [17] based
on the steering quantification in Ref. [7]. The resulting
incompatibility measure has recently been compared with
ours in Ref. [29] (see especially Fig. 2 therein); while there
are strong quantitative differences, the qualitative behavior is
relatively similar except for special cases.

Finally, we wish to point out that our work on the dynamics
of incompatibility in open systems has a natural applica-
tion in quantum optimal control, namely finding optimal
measurement resources for, say, noisy steering by using the
incompatibility quantification as a figure of merit. Such a study
has recently been carried out by one of the present authors [37].
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