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Problem of coherent control in non-Markovian open quantum systems
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We critically evaluate the most widespread assumption in the theoretical description of coherent control
strategies for open quantum systems. We show that, for non-Markovian open systems dynamics, this fixed-
dissipator assumption leads to a serious pitfall generally causing difficulties in the effective modeling of the
controlled system. We show that at present, to avoid these problems, a full microscopic description of the controlled
system in the presence of noise may often be necessary. We illustrate our findings with a paradigmatic example.
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Motivated by the tremendous progress in quantum tech-
nologies, considerable effort has been devoted to minimizing
environment-induced decoherence effects. Efficient schemes
for compensating harmful noise in quantum systems have been
developed utilizing the quantum Zeno effect [1,2], dynamical
decoupling strategies [3–5], and optimal control [6–17].
Generally, the theoretical description of these techniques in the
presence of noise is a daunting task, therefore they are typically
studied under a number of assumptions concerning the type
of environments the system is interacting with as well as the
typical time scales. Specifically, optimal control techniques
have been so far studied, almost exclusively, in the so-called
Markovian limit; that is, whenever the system-environment
interaction is weak and the correlations short living. In this
case the master equations describing the open system dynamics
are found phenomenologically or derived with microscopic
approaches using numerous approximations [6–17].

Lately, non-Markovian open quantum systems have been
drawing a great deal of attention due to their important role in
many realistic experimental scenarios [18–23]. Indeed, when
the typical approximations used in the microscopic approaches
are not valid, exact approaches are needed to properly
describe strong and long-lasting memory effects. Further, non-
Markovian open quantum systems can be characterized via
their capability to gain back information previously lost due to
decoherence. Thus, it has been speculated whether the memory
effects could be utilized as a resource for quantum information
tasks by means of reservoir engineering techniques [24–27].
Since access and control of the environment is often limited, it
is still unclear to what extent such an approach can be carried
forward. In this context, recently many have wondered whether
memory effects combined with external control techniques
offer a possibility to design an overall superior technique
to combat decoherence [4,28–30]. Unfortunately, contrary
to intuitive reasoning, non-Markovianity is not trivially a
resource for optimal control and indeed specific cases have
been found where memory effects are instead detrimental in
the presence of control [4,30].
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In this article, we expose the difficulties in employing
coherent control to compensate for environment-induced
decoherence effects in non-Markovian systems. We consider
the widespread assumption (fixed dissipator assumption) that
the part of the master equation describing dissipation and
dephasing does not change when we add a Hamiltonian
control term in the unitary dynamics part. This assumption
does not change the physicality of the solutions of the master
equation in the Markovian case. We show, however, that this
is generally not the case for non-Markovian dynamics. Hence
the typical theoretical approaches to quantum control theory
cannot be used in the framework of non-Markovian open
quantum systems, and only a full microscopic derivation leads
to physically meaningful results.

For the sake of concreteness we focus on a novel concept
utilizing Hamiltonian control recently introduced to counteract
the detrimental effect of decoherence. In Ref. [6], the goal is to
seek the control Hamiltonian that, on asymptotic time scales,
optimally upholds a given target property (e.g., coherence,
entanglement, or fidelity with respect to a target state). The
space of Hamiltonians cannot be efficiently parametrized,
hence the problem is approached from a different perspective.
The key idea is to optimize some target property in the set of
stabilizable cycles, comprising all closed periodic trajectories
ρ(t) = ρ(t + T ) for which a periodic control Hamiltonian
exists such that ρ(t) solves the master equation (� = 1)

ρ̇ = −i[H (t),ρ] + D(ρ), (1)

with a fixed dissipator D(ρ) = ∑
k γk[LkρL

†
k − 1

2 {L†
kLk,ρ}]

composed of Lindblad operators Lk and decay rates γk .
The crucial insight behind this is that physically admissible
trajectories in state space are strongly constrained by the
dissipative part D of the dynamics alone, which is assumed
to be fixed (i.e., it does not change in the presence or
absence of the control Hamiltonian). A simple criterion,
for which a time-dependent control Hamiltonian H (t) exists
such that ρ(t) solves the master equation, can be written as
follows:

∀t ∀n : Tr[ρn−1(t)D(ρ(t))] = 1

n
δtTr[ρ(t)n], (2)
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which holds for any ρ(t) with non-degenerate eigenvalues
and n ∈ {2, . . . ,d}. This method thus gives an astonishingly
simple characterization of optimal control schemes in the
presence of fixed dissipation. Now the obvious questions arise:
Can such method be extended to non-Markovian quantum
dynamics? Is it possible to determine a time-dependent
control Hamiltonian for a fixed non-Markovian dissipator
(with temporarily negative decay rates) to optimize some target
property?

In order to tackle these questions let us concentrate on a
simple example of a single qubit in a dephasing environment.
We begin by exploring the phenomenological case, where the
qubit dissipator is fixed under the control sequence. In view
of the non-Markovian dynamics considered below, we seek a
control Hamiltonian that, on average, optimally upholds the
coherence between the ground and excited state for the time
T the system markedly evolves (in contrast to asymptotic time
scales, as in [6]). Control is no longer required for t � T ; when
the Hamiltonian vanishes, the states then cease to evolve. For
the single qubit, an admissible trajectory {ρ(t) : t ∈ [0,T )},
or {�rt } in the Bloch ball, must then satisfy at all times the
following criterion [6]:

�rt · (D�rt + �d)︸ ︷︷ ︸
f (�rt )

= 1
2δt |�rt |2︸ ︷︷ ︸

ṗ(�rt )

. (3)

Here, the 3 × 3 matrix (D)ij = Tr[σiD(σj )] and the vector
( �d)i = Tr[σiD(I)] characterize the dissipator in Bloch nota-
tion. Hence, the time evolution of the purity of the state
p = Tr[ρ2] = (|�r|2 + 1)/2 is exclusively governed by the
dissipator. Moreover, for trajectories with purity-increasing
sections, one can show that the respective purity flux f (ρ) =
Tr[ρD(ρ)] of the dissipator must then be positive. Now, for
a Markovian dephasing process, for which the dynamics is
generated by the dissipator

Dt (ρ) = γ (t)

2
(σzρσz − ρ), (4)

with γ (t) > 0, we obtain at all times negative purity flux
f (�r,t) = −γ (t)(r sin φ)2 < 0, where r ∈ {0,1} and φ ∈ {0,π}
is the polar angle. Hence, trajectories with purity-increasing
sections are physically inconsistent in such system. As a
consequence, any trajectory will, after sufficient evolution,
inevitably be devoid of coherence, irrespective of any con-
ceivable coherent control strategy. In the presence of non-
Markovian effects, however, the decay rate in the dissipator
can take negative values, giving rise to periods of negative
purity flux. Thus, one may naively think that optimal control
trajectories may now be implemented anywhere in the Bloch
sphere.

Let us assume that there would exist an implementation
strategy, where we can choose a non-Markovian dephasing
process which is fixed and independent of the unitary rotations
imposed by the control Hamiltonian. We consider a decay rate
of the form

γ (t) = [1 + t2]−s/2�[s] sin[s arctan(t)], (5)

which is obtained in the exact model of a qubit interacting with
a bosonic zero temperature environment with an Ohmic-like

FIG. 1. Snapshots of the purity flux f (�r) for the purely dephasing
dynamics (4) with the non-Markovian rate (5) for s = 3 and time
instances corresponding to positive (i) and negative (ii) values of
the decay rate. The set of stabilizable states S [7] corresponding
to vanishing purity flux is time independent and forms a line along
rx = 0 (shown in black). For γ (t) > 0, it is immediate to see that
f (�r,t) < 0 (i). On the contrary, f (�r,t) > 0 whenever γ (t) < 0 (ii).

spectral density [31–33],

J (ω) = ωs

ωs−1
c

e−ω/ωc , (6)

where s is the Ohmicity parameter and ωc a cutoff frequency.
The form of spectral density can be modified through the
parameter s (the Ohmicity parameter). Specifically, for s > 2,
the decay rate takes temporarily negative values for certain
time intervals [34] which temporarily reverses the direction of
the purity flux f (�r,t) (see Fig. 1). The purity flux associated
to this model is shown in Fig. 1 for intervals of time when
the decay rate is positive (i) and negative (ii) respectively and
choosing s = 3 for illustrative purposes.

For the purpose of our optimization task, it is sufficient to
restrict to trajectories containing two periods of free evolution
(evolution without control), interrupted by a single unitary
rotation at the instant t̃ at which the decay rate changes sign
(this is in close analogy to the two-point cycles considered
in [6]). The rotation must be fast compared to the incoherent
dynamics so that no purity is lost along the way, i.e., we assume
that the rotation is instantaneous. Moreover, we perform
the fixed-dissipator assumption, namely, we assume that for
t > t̃ , the dynamics can still be described with the original
Lindbladian Lt , shown in Eq. (4). For simplicity, we restrict to
the case where the rate γ (t) changes sign only a single time,
i.e., there exists only one intermediate time t̃ > 0 for which
γ (t̃) = 0 [35]. Trajectories then undergo an initial period of
positive decay rate, for which f (�r,t) < 0, followed by a single
time period in which the decay rate is negative, and hence
f (�r,t) > 0.

In order to indicate the seeming drastic improvement that
can be achieved with appropriate coherent control pulses,
we compare in Fig. 2 for various choices of s the average
coherence C̄(s) that is obtained with the optimal control
protocol to the optimal average coherence that is achieved
in the uncontrolled case of vanishing Hamiltonian.

The initial conditions are as follows: rx(0) = sin φin(s),
ry(0) = ry(t) = 0, rz(0) = cos φin(s) where the evolution of
rx(t) and rz(t) is determined by the dynamics given in Eq. (4).
While the respective initial polar angle φin(s) varies in the
controlled case, in the uncontrolled case optimal initial states
always lie on the equator of the Bloch ball, corresponding to
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FIG. 2. Comparison of the optimal trajectories without (i) and
with (ii) coherent control pulses. In the upper panel, we illustrate, for
s = 4, the trajectories in the stages t < t̃ (red line) and t > t̃ (blue
line), where γ (t̃) = 0. The unitary rotation in the controlled trajectory
is shown in green. In the lower panel, we show the optimal average
coherence C̄(s) (iii) and corresponding polar angle φin(s) for the initial
Bloch vectors, rx(0), ry(0) = ry(t) = 0, rz(0) (iv) for the uncontrolled
(black) and controlled (red) evolution. For 2 < s � 4, we consider a
finite dephasing interval 0 � ωct � 30 [35]. For 4 < s � 5, the decay
is naturally bound by a time T determined by the Ohmic parameter
s [35]. One can clearly see the coherence enhancement obtained in
the controlled case.

the region of strongest flux. The physical intuition behind the
control protocol is to initially “kick” the state into the region
of weak flux as long as it is exposed to detrimental purity-
decreasing dynamics, and to return it to the equator region of
maximal flux when it undergoes supportive purity-increasing
dynamics. We can regard the initial kick as the equivalent
process of preparing a different initial state. It is immediate
to see from Fig. 2(iii), that the optimal controlled trajectories
are superior in obtaining higher average coherence values as
compared to the optimal uncontrolled evolution. In the Ohmic
range 2 < s � 4, we consider optimal trajectories confined
to a time interval 0 < t < T > t̃ . We note that for longer
times T , the values of optimal average coherence increase
but retain the same dependence on the Ohmic parameter s.
We choose the intermediate rotation to optimally compensate
for the weak non-Markovian revivals, in the sense that the
purity lost in the red stage is fully regained in the blue stage.
Moreover, we choose to always start the cycle from the surface
of the Bloch sphere [r(0) = 1]. The optimal average coherence
and corresponding initial angle φin(s) [fixed by the constraint
|r(0)| = |r(T )| = 1] increase with s as the strength of the
purity flux increases and t̃ decreases. For 4 < s � 6, the initial
angle φin continues to increase but the average coherence
C̄(s) decreases [see Figs. 2(iii) and 2(iv)]. For t � T , the
state remains at the surface of the Bloch sphere with perfect
coherence. Hence, for asymptotic time scales, coherence can
be maximally exploited as a resource.

These results clearly show the ability to achieve high
values of average coherence for non-Markovian dynamics and

hence they indicate that, if the fixed-dissipator assumption
is satisfied, coherent control schemes could potentially work
effectively in the presence of non-Markovian noise. In the
specific example considered here, this is even more remarkable
since the same method does not work in the Markovian case.
On the other hand, for incoherent processes where the method
does work in the Markovian case, a wider portion of the state
space becomes available for trajectories in the presence of
memory effects.

Unfortunately, there exist scenarios where the promise of
utilizing non-Markovian dynamics to achieve such high aver-
age coherence values can never be achieved experimentally.
To show this, let us examine the physical feasibility of the
above strategy by critically examining the fixed dissipator
assumption in full generality.

Let us consider a fixed dissipator Dt generating, in the
absence of any coherent control, a t-parametrized family of
completely positive and trace preserving (CPTP) maps {
t },
such that ρ(t) = 
tρ(0). If the dynamics is non-Markovian,
then the so-called divisibility property of the map is not
valid. Explicitly, nondivisibility means that the propagator

t,s = 
t


−1
s , defined via the relation 
t = 
t,s
s , is not

completely positive. Since 
t is, however, CPTP, one should
conclude that on a restricted space of initial states (space of
accessible states) defined by ρ(s) = 
sρ(0) the intermediate
map 
t,s is completely positive.

If we assume that the dissipator remains fixed under a
unitary (coherent) interruption U of the dynamics at time
s, we can write the dynamical map in the controlled case
as 
̃t = 
t,sU
s = 
t


−1
s U
s . Now, unless the original

dynamical maps are covariant, i.e., U
t = 
tU , the object

̃t is no longer guaranteed to be a CP map because the
unitary can move the intermediate state ρ(s) outside the
space of accessible states. Losing complete positivity of the
dynamical map means that the dynamics is never physical
or, stated another way, no physical implementation of this
master equation exists. It is worth noticing that, for Markovian
and therefore divisible dynamics this problem does not occur
because the propagator is always CP and therefore the modified
map 
̃ in the presence of coherent control unitaries is always
CP and therefore physical. Thus, in general, knowing the
open system dynamics in the absence of control does not
give enough information to construct a physically meaningful
open system dynamics in the presence of control, even if the
control field is completely known. While in very simple cases
(two-level system) CP conditions are known, verifying CP of
the dynamical map becomes a practically untreatable problem
as the dimension of the Hilbert space of the open quantum
system increases. In general, the full exact dynamics of the
system plus the environment needs to be solved, taking into
account the control field in the microscopic derivation, in order
to tackle the problem of optimal control in the non-Markovian
case.

To illustrate our result we go back to the simple exact pure
dephasing example previously considered and solve the full
system plus environment microscopic model in the presence
of an instantaneous rotation [32]. The only assumption that we
will make is that the pulse which induces the unitary rotation
is instantaneous. This is a satisfactory approximation provided
that the time necessary to perform the pulse is much shorter
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than any other time scale relevant to the system and is also
widely used in descriptions of dynamical decoupled dynamics
[36,37]. Our aim is to see how the presence of this rotation
alters the form of the dissipator and to compare the correct
microscopically derived dynamics with the phenomenological
approach using the fixed dissipator assumption.

In the absence of control the dynamics are described by
the dissipator in Eq. (4) with the decay rate given by Eq. (5).
The decay rate is related to the decoherence function �(t),
defined by ρij (t) = ρij (0)e−�(t) (i �= j ), through the relation
γ (t) = d�(t)

dt
. For the Ohmic class of spectral densities here

considered the decoherence function takes the form

�(t) = �[s]

s − 1
{1 − (1 + t2)−s/2{cos[s arctan(t)]

+ t sin[s arctan(t)]}}. (7)

We now provide the microscopic derivation of the pure
dephasing system subject to a single unitary rotation. We
study the exact model for pure dephasing dynamics, with the
following Hamiltonian describing the local interaction of a
qubit and a bosonic reservoir, in units of �:

H = ω0σz +
∑

k

ωka
†
kak +

∑
k

σz(gkak + g∗
k a

†
k), (8)

where ω0 is the qubit frequency, ωk the frequencies of the
reservoir modes, ak (a†

k) the annihilation (creation) operators,
and gk the coupling constant between each reservoir mode
and the qubit. The form of spectral density can be modified
through the parameter s (the Ohmicity parameter). The initial
state, composed by the qubit and the field is |�(0)〉 = (ce |e〉 +
cg |g〉) ⊗ |0〉, with |0〉 = ⊗

k |0〉k. Let us denote the time at
which the unitary pulse is applied by t̃ . The system evolves for
0 < t < t̃ as follows [32]:

|�(t)〉 = U (t,0) |�(0)〉
= ce |e〉 ⊗ |�e(t)〉 + cg |g〉 ⊗ |�g(t)〉 , (9)

with |�e〉 = ⊗
k Ue(t,0) |0k〉 and |�e〉 = ⊗

k Ue(t,0) |0k〉.
The time evolution operator (in the interaction picture) takes
the form:

U (t) = exp

{
−i

∫ t

0

∑
k

σz(gkb
†
ke

iωkt
′ + g∗

k bke
−iωkt

′
)dt ′

}

= exp

{
σz

1

2

∑
k

[b†kξk(t) − bkξ
∗
k (t)]

}
, (10)

with

ξk(t) = 2gk

1 − eiωkt

ωk

. (11)

Here, U (t) can be described as a conditional displacement
operator, the sign of the displacement being dependent on the
logical value of the qubit, denoted Ue and Ug for the respective

values. In particular, for any pure state |
〉 of the field:

U (t) |g〉 ⊗ |
〉 = |g〉 ⊗
∏
k

D

(
−1

2
ξk(t)

)
|
〉 ,

(12)

U (t) |e〉 ⊗ |
〉 = |e〉 ⊗
∏
k

D

(
1

2
ξk(t)

)
|
〉 ,

where the displacement operator D(ξk) is defined as

D(ξk) = exp{b†kξk − bkξ
∗
k } (13)

and | 1
2ξk(t)〉 is a coherent state of amplitude 1

2ξk(t). If a rotation
occurs at t̃ , we have

|�ROT(t̃)〉
= Ry(φ) |�(t̃)〉

= ce

[
cos

(
φ

2

)
|e〉 + sin

(
φ

2

)
|g〉

]
⊗ Ue(t̃ ,0) |0〉

+ cg

[
− sin

(
φ

2

)
|e〉 + cos

(
φ

2

)
|g〉

]
⊗ Ug(t̃ ,0) |0〉

= |e〉⊗
[
ce cos

(
φ

2

)
Ue(t̃ ,0) |0〉 −cg sin

(
φ

2

)
Ug(t̃ ,0) |0〉

]

+ |g〉⊗
[
ce sin

(
φ

2

)
Ue(t̃ ,0) |0〉 +cg cos

(
φ

2

)
Ug(t̃ ,0) |0〉

]
,

(14)

and Ry(φ) = e−i(φ/2)σy = cos φ

2 I − i sin φ

2 σy . For times t > t̃ ,
the combined system evolves according to

U (t,t̃)Ry(φ)U (t̃ ,0) |�(0)〉

= |e〉 ⊗
[
ce cos

(
φ

2

)
|�ee(t)〉 − cg sin

(
φ

2

)
|�eg(t,t̃)〉

]

+ |g〉 ⊗
[
ce sin

(
φ

2

)
|�ge(t,t̃)〉 +cg cos

(
φ

2

)
|�gg(t)〉

]
,

(15)

where we have

|�ee(t)〉 = Ue(t,t̃)Ue(t̃ ,0) |0〉 ,

|�ge(t,t̃)〉 = Ug(t,t̃)Ue(t̃ ,0) |0〉 ,

|�eg(t,t̃)〉 = Ue(t,t̃)Ug(t̃ ,0) |0〉 ,

|�gg(t)〉 = Ug(t,t̃)Ug(t̃ ,0) |0〉 . (16)

The matrix elements of the reduced density matrix of the
qubit are defined as

ρij (t,t̃) = 〈i| TrEU (t,t̃)Ry(
)U (t̃ ,0)ρ(0)U †

× (t̃ ,0)R†
y(
)U †(t,t̃) |j 〉 . (17)

Hence, we have the following elements of the density matrix:

ρee(t,t̃) = |ce|2 cos2

(
φ

2

)
+ |cg|2 sin2

(
φ

2

)
− [cec

∗
g〈�eg(t,t̃)|�ee(t)〉

+ c∗
e cg〈�ee(t)|�eg(t,t̃)〉] sin

(
φ

2

)
cos

(
φ

2

)
, (18)
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ρeg(t,t̃) = cos

(
φ

2

)
sin

(
φ

2

)
[|ce|2〈�ee(t)|�ge(t,t̃)〉

− |cg|2〈�eg(t,t̃)|�gg(t)〉]

+ c∗
e cg cos2

(
φ

2

)
〈�ee(t)|�gg(t)〉

− cec
∗
g sin2

(
φ

2

)
〈�eg(t,t̃)|�ge(t,t̃)〉, (19)

where ρgg = 1 − ρee and ρge = ρ∗
eg .

Before the unitary rotation, the dynamics of the qubit are
of course described via the decoherence function of Eq. (7).
After an instantaneous rotation of angle φ around the y axis,
the resultant Bloch vectors are given as follows:

rx(t,t̃) = rz(0) sin(φ)e−�(t−t̃) cos[y(t)] + rx(0)e−�(t)

×
[

cos2

(
φ

2

)
− sin2

(
φ

2

)
e2[�(t)−�(t̃)−�(t−t̃)]

]
,

(20)

ry(t,t̃) = rz(0) sin(φ)e−�(t−t̃) sin[y(t)] + ry(0)e−�(t)

×
[

cos2

(
φ

2

)
− sin2

(
φ

2

)
e2[�(t)−�(t̃)−�(t−t̃)]

]
,

(21)

rz(t̃) = rz(0) cos(φ) − rx(0) sin(φ)e−�(t̃), (22)

where y(t) = Im[�̃(t) − �̃(t̃) − �̃(t − t̃)] and

�̃(t) = 4�[s − 1](1 − t2)−s/2{sin[s arctan(t)]

− t cos[s arctan(t)]}.
(23)

In Fig. 3(i), we plot the true evolution of the system, when
the dissipator is not fixed but instead the unitary rotation is
incorporated into the microscopic derivation. This dynamics
should be contrasted with the corresponding trajectory on the
Bloch sphere in the fixed dissipator assumption, as shown in
Fig. 3(ii). The latter dynamics are obviously not CP, since
the trajectory falls outside the Bloch sphere. Such trajectories
can be achieved, for example, by choosing initial polar angles
φ̃in < φin(s), where φin(s) is the angle fixed by the constraint
|r(0)| = |r(T )| = 1, shown in in Fig. 2(iv).

To conclude, we briefly comment on the special case in
which the fixed-dissipator assumption is used but the qubit
undergoes a covariant dynamics [38,39]. It is easy to convince
oneself that coherent control will never be useful in such a
case, since by definition applying the control pulse before,
during, or after the nonunitary evolution leads to the very same
state. Hence, choosing a different initial state is equivalent
to implementing any coherent control sequence during the
evolution.

FIG. 3. Dynamics of the qubit obtained from (i) the exact model
in the presence of a control pulse and (ii) assuming a fixed dissipator.
The trajectory is divided into three stages: t < t̃ (top red line), t > t̃

(bottom blue line), and the unitary jump between the two (middle
green line). For illustrative purposes, we have chosen s = 4 and initial
polar angle 
in(s) > 
̃in = 0.2π .

Summarizing, our results show that the appealing idea
of using optimal control strategies in the presence of non-
Markovian noise inevitably leads to formidable difficulties.
Indeed, except for a few simple cases in which CP of
the controlled open dynamics can be checked, the only
physically meaningful description of the reduced dynamics
in the presence of control pulses currently appears to be the
one obtained via an exact microscopic model entailing system
plus controlled pulses plus interaction with the environment.
If the decay rate in the dissipator changes markedly after
each pulse, it is clear that, in general, constructing superior
trajectories will never be a feasible task. A possible solution to
this impasse might be the discovery of certain special forms of
non-Markovian dissipators that may not be changing sensibly
in the presence of some specific coherent control schemes,
perhaps exploiting specific symmetries.
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