109 research outputs found

    Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells

    Get PDF
    A simple, cost-effective, and environmentally friendly approach to the aqueous-phase synthesis of silver (Ag) nanoparticles was demonstrated using silver nitrate (AgNO3) and freshly extracted egg white. The bio-conjugates were characterized by UV-visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectrometry, and dynamic light scattering. These results indicated that biomolecule-coated Ag nanoparticles are predominantly spherical in shape with an average size of 20 nm. The proteins of egg white, which have different functional groups, played important roles in reducing Ag+ and maintaining product attributes such as stability and dispersity. In vitro cytotoxicity assays showed that these Ag-protein bio-conjugates showed good biocompatibility with mouse fibroblast cell lines 3T3. Furthermore, X-ray irradiation tests on 231 tumor cells suggested that the biocompatible Ag-protein bio-conjugates enhanced the efficacy of irradiation, and thus may be promising candidates for use during cancer radiation therapy

    Numerical Study of the Movement of Fine Particle in Sound Wave Field

    Get PDF
    AbstractInhalable particulate matter, especially PM2.5 is one of the main pollutants in China and it's harmful to both human health and atmosphere. Since the removal efficiency of traditional dust removal devices such as ESP for PM2.5 is very low, pretreatment becomes necessary before the dust gets into the dust remover. Acoustic agglomeration is one of the pretreatment technologies which uses sound wave with high intensity to make fine particles get agglomerate and grow up, and improves the efficiency of traditional dust removal devices for PM2.5. In sound wave field, fine particles are carried by the medium which in this paper is air, and vibrate with different amplitude because of different particle sizes, thus relative movement appears and then particles have more chances to collide and get agglomerate. In this paper, the movement of particles with different sizes in travelling wave sound field and standing wave sound field were calculated, including the velocity, displacement, amplitude and so on. The situation that Re<1 was considered and Viscous force in Stokes region was chose as the main forces here. Studying the movement of fine particle in sound field with different conditions has great meaning in learning the mechanisms of acoustic agglomeration

    Electrochemical properties of roots determine antibiotic adsorption on roots

    Get PDF
    The adsorption behaviors and transfer pathways of antibiotics in plant–soil system are greatly influenced by the electrochemical properties of both soil particles and plant roots. However, the effects of roots electrochemical properties on antibiotic adsorption are largely unknown. Here, the fresh soybean, maize, and wheat roots with different electrochemical properties were obtained from hydroponic cultivation, and the adsorption processes and mechanisms of doxycycline, tetracycline, sulfadiazine, and norfloxacin on roots under various environmental conditions were investigated. Results showed that the adsorption amount of antibiotics on roots increased with the initial concentration of antibiotics. The coexisting low–molecular weight organic acids and anions inhibited the antibiotic adsorption on roots. The soybean roots performed strong adsorption ability compared with the maize and wheat roots driven by the variations in root electrochemical properties. This study demonstrates the significance of electrochemical interactions between antibiotics and roots in plant–soil system and can contribute to the more accurate risk assessment and effective pollution control of antibiotics

    Compound microsatellites in complete Escherichia coli genomes

    Get PDF
    AbstractCompound microsatellites consisting of two or more repeats in close proximity have been found in eukaryotic genomes. So far such compound microsatellites have not been investigated in any prokaryotic genomes. We have therefore examined compound microsatellites in 22 complete genomes of Escherichia coli, which is one of the ideal model organisms to analyze the nature and evolution of prokaryotic compound microsatellites. Our results indicated that about 1.75–2.85% of all microsatellites could be accounted as compound microsatellites with very low complexity, and most compound microsatellites were composed of very different motifs. Compound microsatellites were significantly overrepresented in all surveyed genomes. These results were dramatically different from those in eukaryotes. We discussed the possible reasons for the observed divergence

    Remarkable response to PD-1 inhibitor in a patient with extensive-stage small cell lung cancer: a case report and literature review

    Get PDF
    We report a case of a 59-year-old male diagnosed with extensive-stage small cell lung cancer (SCLC). He received first-line platinum doublet chemotherapy and second-line topotecan-based regimen, but experienced disease progression after each line of therapy. He was then treated with Sintilimab, a PD-1 inhibitor, in combination with nab-paclitaxel in the third-line setting, which resulted in significant tumor shrinkage. Restaging scans showed a partial response per RECIST criteria with 62% reduction in tumor burden. This case highlights the application and efficacy of immune checkpoint inhibitors in extensive-stage SCLC

    Genomic landscape and expression profile of consensus molecular subtype four of colorectal cancer

    Get PDF
    BackgroundCompared to other subtypes, the CMS4 subtype is associated with lacking of effective treatments and poorer survival rates.MethodsA total of 24 patients with CRC were included in this study. DNA and RNA sequencing were performed to acquire somatic mutations and gene expression, respectively. MATH was used to quantify intratumoral heterogeneity. PPI and survival analyses were performed to identify hub DEGs. Reactome and KEGG analyses were performed to analyze the pathways of mutated or DEGs. Single-sample gene set enrichment analysis and Xcell were used to categorize the infiltration of immune cells.ResultsThe CMS4 patients had a poorer PFS than CMS2/3. CTNNB1 and CCNE1 were common mutated genes in the CMS4 subtype, which were enriched in Wnt and cell cycle signaling pathways, respectively. The MATH score of CMS4 subtype was lower. SLC17A6 was a hub DEG. M2 macrophages were more infiltrated in the tumor microenvironment of CMS4 subtype. The CMS4 subtype tended to have an immunosuppressive microenvironment.ConclusionThis study suggested new perspectives for exploring therapeutic strategies for the CMS4 subtype CRC
    • …
    corecore