171 research outputs found

    Micro-Raman and micro-transmission imaging of epitaxial graphene grown on the Si and C faces of 6H-SiC

    Get PDF
    Micro-Raman and micro-transmission imaging experiments have been done on epitaxial graphene grown on the C- and Si-faces of on-axis 6H-SiC substrates. On the C-face it is shown that the SiC sublimation process results in the growth of long and isolated graphene ribbons (up to 600 ΞΌm) that are strain-relaxed and lightly p-type doped. In this case, combining the results of micro-Raman spectroscopy with micro-transmission measurements, we were able to ascertain that uniform monolayer ribbons were grown and found also Bernal stacked and misoriented bilayer ribbons. On the Si-face, the situation is completely different. A full graphene coverage of the SiC surface is achieved but anisotropic growth still occurs, because of the step-bunched SiC surface reconstruction. While in the middle of reconstructed terraces thin graphene stacks (up to 5 layers) are grown, thicker graphene stripes appear at step edges. In both the cases, the strong interaction between the graphene layers and the underlying SiC substrate induces a high compressive thermal strain and n-type doping

    Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance <it>in vitro </it>occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7<sub>DOX-2</sub>), epirubicin (MCF-7<sub>EPI</sub>), paclitaxel (MCF-7<sub>TAX-2</sub>), or docetaxel (MCF-7<sub>TXT</sub>). During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters.</p> <p>Results</p> <p>In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance.</p> <p>Conclusion</p> <p>This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does occur at the threshold dose, the magnitude of resistance cannot be attributed solely to changes in drug accumulation or the activity of drug transporters. The identities of these additional drug-transporter-independent mechanisms are discussed, including their likely clinical relevance.</p

    Asthma exacerbation and proximity of residence to major roads: a population-based matched case-control study among the pediatric Medicaid population in Detroit, Michigan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relationship between asthma and traffic-related pollutants has received considerable attention. The use of individual-level exposure measures, such as residence location or proximity to emission sources, may avoid ecological biases.</p> <p>Method</p> <p>This study focused on the pediatric Medicaid population in Detroit, MI, a high-risk population for asthma-related events. A population-based matched case-control analysis was used to investigate associations between acute asthma outcomes and proximity of residence to major roads, including freeways. Asthma cases were identified as all children who made at least one asthma claim, including inpatient and emergency department visits, during the three-year study period, 2004-06. Individually matched controls were randomly selected from the rest of the Medicaid population on the basis of non-respiratory related illness. We used conditional logistic regression with distance as both categorical and continuous variables, and examined non-linear relationships with distance using polynomial splines. The conditional logistic regression models were then extended by considering multiple asthma states (based on the frequency of acute asthma outcomes) using polychotomous conditional logistic regression.</p> <p>Results</p> <p>Asthma events were associated with proximity to primary roads with an odds ratio of 0.97 (95% CI: 0.94, 0.99) for a 1 km increase in distance using conditional logistic regression, implying that asthma events are less likely as the distance between the residence and a primary road increases. Similar relationships and effect sizes were found using polychotomous conditional logistic regression. Another plausible exposure metric, a reduced form response surface model that represents atmospheric dispersion of pollutants from roads, was not associated under that exposure model.</p> <p>Conclusions</p> <p>There is moderately strong evidence of elevated risk of asthma close to major roads based on the results obtained in this population-based matched case-control study.</p

    Pressure-temperature evolution of primordial solar system solids during impact-induced compaction

    Get PDF
    Prior to becoming chondritic meteorites, primordial solids were a poorly consolidated mix of mm-scale igneous inclusions (chondrules) and high-porosity sub-ΞΌm dust (matrix). We used high-resolution numerical simulations to track the effect of impact-induced compaction on these materials. Here we show that impact velocities as low as 1.5 km sβˆ’1 were capable of heating the matrix to >1,000 K, with pressure–temperature varying by >10 GPa and >1,000 K over ~100 μm. Chondrules were unaffected, acting as heat-sinks: matrix temperature excursions were brief. As impact-induced compaction was a primary and ubiquitous process, our new understanding of its effects requires that key aspects of the chondrite record be re-evaluated: palaeomagnetism, petrography and variability in shock level across meteorite groups. Our data suggest a lithification mechanism for meteorites, and provide a β€˜speed limit’ constraint on major compressive impacts that is inconsistent with recent models of solar system orbital architecture that require an early, rapid phase of main-belt collisional evolution

    Chronic insulin treatment of diabetes does not fully normalize alterations in the retinal transcriptome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. Approximately 95% of patients with Type 1 diabetes develop some degree of retinopathy within 25 years of diagnosis despite normalization of blood glucose by insulin therapy. The goal of this study was to identify molecular changes in the rodent retina induced by diabetes that are not normalized by insulin replacement and restoration of euglycemia.</p> <p>Methods</p> <p>The retina transcriptome (22,523 genes and transcript variants) was examined after three months of streptozotocin-induced diabetes in male Sprague Dawley rats with and without insulin replacement for the later one and a half months of diabetes. Selected gene expression changes were confirmed by qPCR, and also examined in independent control and diabetic rats at a one month time-point.</p> <p>Results</p> <p>Transcriptomic alterations in response to diabetes (1376 probes) were clustered according to insulin responsiveness. More than half (57%) of diabetes-induced mRNA changes (789 probes) observed at three months were fully normalized to control levels with insulin therapy, while 37% of probes (514) were only partially normalized. A small set of genes (5%, 65 probes) was significantly dysregulated in the insulin-treated diabetic rats. qPCR confirmation of findings and examination of a one month time point allowed genes to be further categorized as prevented or rescued with insulin therapy. A subset of genes (Ccr5, Jak3, Litaf) was confirmed at the level of protein expression, with protein levels recapitulating changes in mRNA expression.</p> <p>Conclusions</p> <p>These results provide the first genome-wide examination of the effects of insulin therapy on retinal gene expression changes with diabetes. While insulin clearly normalizes the majority of genes dysregulated in response to diabetes, a number of genes related to inflammatory processes, microvascular integrity, and neuronal function are still altered in expression in euglycemic diabetic rats. Gene expression changes not rescued or prevented by insulin treatment may be critical to the pathogenesis of diabetic retinopathy, as it occurs in diabetic patients receiving insulin replacement, and are prototypical of metabolic memory.</p

    Histone Variants and Their Post-Translational Modifications in Primary Human Fat Cells

    Get PDF
    Epigenetic changes related to human disease cannot be fully addressed by studies of cells from cultures or from other mammals. We isolated human fat cells from subcutaneous abdominal fat tissue of female subjects and extracted histones from either purified nuclei or intact cells. Direct acid extraction of whole adipocytes was more efficient, yielding about 100 Β΅g of protein with histone content of 60% –70% from 10 mL of fat cells. Differential proteolysis of the protein extracts by trypsin or ArgC-protease followed by nanoLC/MS/MS with alternating CID/ETD peptide sequencing identified 19 histone variants. Four variants were found at the protein level for the first time; particularly HIST2H4B was identified besides the only H4 isoform earlier known to be expressed in humans. Three of the found H2A potentially organize small nucleosomes in transcriptionally active chromatin, while two H2AFY variants inactivate X chromosome in female cells. HIST1H2BA and three of the identified H1 variants had earlier been described only as oocyte or testis specific histones. H2AFX and H2AFY revealed differential and variable N-terminal processing. Out of 78 histone modifications by acetylation/trimethylation, methylation, dimethylation, phosphorylation and ubiquitination, identified from six subjects, 68 were found for the first time. Only 23 of these modifications were detected in two or more subjects, while all the others were individual specific. The direct acid extraction of adipocytes allows for personal epigenetic analyses of human fat tissue, for profiling of histone modifications related to obesity, diabetes and metabolic syndrome, as well as for selection of individual medical treatments

    Cigarette Smoking and p16INK4Ξ± Gene Promoter Hypermethylation in Non-Small Cell Lung Carcinoma Patients: A Meta-Analysis

    Get PDF
    BACKGROUND:Aberrant methylation of promoter DNA and transcriptional repression of specific tumor suppressor genes play an important role in carcinogenesis. Recently, many studies have investigated the association between cigarette smoking and p16(INK4Ξ±) gene hypermethylation in lung cancer, but could not reach a unanimous conclusion. METHODS AND FINDINGS:Nineteen cross-sectional studies on the association between cigarette smoking and p16(INK4Ξ±) methylation in surgically resected tumor tissues from non-small cell lung carcinoma (NSCLC) patients were identified in PubMed database until June 2011. For each study, a 2Γ—2 cross-table was extracted. In total, 2,037 smoker and 765 nonsmoker patients were pooled with a fixed-effects model weighting for the inverse of the variance. Overall, the frequency of p16(INK4Ξ±) hypermethylation was higher in NSCLC patients with smoking habits than that in non-smoking patients (ORβ€Š=β€Š2.25, 95% CIβ€Š=β€Š1.81-2.80). The positive association between cigarette smoking and p16(INK4Ξ±) hypermethylation was similar in adenocarcinoma and squamous-cell carcinoma. In the stratified analyses, the association was stronger in Asian patients and in the studies with larger sample sizes. CONCLUSION:Cigarette smoking is positively correlated to p16(INK4Ξ±) gene hypermethylation in NSCLC patients

    Accelerated functional brain aging in pre-clinical familial Alzheimer’s disease

    Get PDF
    Resting state functional connectivity (rs-fMRI) is impaired early in persons who subsequently develop Alzheimer’s disease (AD) dementia. This impairment may be leveraged to aid investigation of the pre-clinical phase of AD. We developed a model that predicts brain age from resting state (rs)-fMRI data, and assessed whether genetic determinants of AD, as well as beta-amyloid (AΞ²) pathology, can accelerate brain aging. Using data from 1340 cognitively unimpaired participants between 18–94 years of age from multiple sites, we showed that topological properties of graphs constructed from rs-fMRI can predict chronological age across the lifespan. Application of our predictive model to the context of pre-clinical AD revealed that the pre-symptomatic phase of autosomal dominant AD includes acceleration of functional brain aging. This association was stronger in individuals having significant AΞ² pathology

    Interaction of SET domains with histones and nucleic acid structures in active chromatin

    Get PDF
    Changes in the normal program of gene expression are the basis for a number of human diseases. Epigenetic control of gene expression is programmed by chromatin modificationsβ€”the inheritable β€œhistone code”—the major component of which is histone methylation. This chromatin methylation code of gene activity is created upon cell differentiation and is further controlled by the β€œSET” (methyltransferase) domain proteins which maintain this histone methylation pattern and preserve it through rounds of cell division. The molecular principles of epigenetic gene maintenance are essential for proper treatment and prevention of disorders and their complications. However, the principles of epigenetic gene programming are not resolved. Here we discuss some evidence of how the SET proteins determine the required states of target genes and maintain the required levels of their activity. We suggest that, along with other recognition pathways, SET domains can directly recognize the nucleosome and nucleic acids intermediates that are specific for active chromatin regions

    Restricting Dosage Compensation Complex Binding to the X Chromosomes by H2A.Z/HTZ-1

    Get PDF
    Dosage compensation ensures similar levels of X-linked gene products in males (XY or XO) and females (XX), despite their different numbers of X chromosomes. In mammals, flies, and worms, dosage compensation is mediated by a specialized machinery that localizes to one or both of the X chromosomes in one sex resulting in a change in gene expression from the affected X chromosome(s). In mammals and flies, dosage compensation is associated with specific histone posttranslational modifications and replacement with variant histones. Until now, no specific histone modifications or histone variants have been implicated in Caenorhabditis elegans dosage compensation. Taking a candidate approach, we have looked at specific histone modifications and variants on the C. elegans dosage compensated X chromosomes. Using RNAi-based assays, we show that reducing levels of the histone H2A variant, H2A.Z (HTZ-1 in C. elegans), leads to partial disruption of dosage compensation. By immunofluorescence, we have observed that HTZ-1 is under-represented on the dosage compensated X chromosomes, but not on the non-dosage compensated male X chromosome. We find that reduction of HTZ-1 levels by RNA interference (RNAi) and mutation results in only a very modest change in dosage compensation complex protein levels. However, in these animals, the X chromosome–specific localization of the complex is partially disrupted, with some nuclei displaying DCC localization beyond the X chromosome territory. We propose a model in which HTZ-1, directly or indirectly, serves to restrict the dosage compensation complex to the X chromosome by acting as or regulating the activity of an autosomal repellant
    • …
    corecore