13 research outputs found

    Captive-born collared peccary (Pecari tajacu, Tayassuidae) fails to discriminate between predator and non-predator models

    Get PDF
    Captive animals may lose the ability to recognize their natural predators, making conservation programs more susceptible to failure if such animals are released into the wild. Collared peccaries are American tayassuids that are vulnerable to local extinction in certain areas, and conservation programs are being conducted. Captive-born peccaries are intended for release into the wild in Minas Gerais state, southeastern Brazil. In this study, we tested the ability of two groups of captive-born collared peccaries to recognize their predators and if they were habituated to humans. Recognition tests were performed using models of predators (canids and felids) and non-predators animals, as well as control objects, such as a plastic chair; a human was also presented to the peccaries, and tested as a separate stimulus. Anti-predator defensive responses such as fleeing and threatening displayswere not observed in response to predator models. Predator detection behaviors both from visual and olfactory cues were displayed, although they were not specifically targeted at predator models. These results indicate that collared peccaries were unable to recognize model predators. Habituation effects, particularly on anti-predator behaviors, were observed both with a 1-h model presentation and across testing days. Behavioral responses to humans did not differ from those to other models. Thus, if these animals were to be released into the wild, they should undergo anti-predator training sessions to enhance their chances of survival

    Function, size and form of the gastrointestinal tract of the collared Pecari tajacu (Linnaeus 1758) and white-lipped peccary Tayassu pecari (Link 1795)

    Full text link
    The peccary digestive tract is characterised by an elaborate forestomach. In order to further characterise the digestive function of peccaries, we report body mass, digestive organ mass, content mass of the gastrointestinal tract compartments and their length and width, as well as liver, parotis and mandibular gland mass. Our data on eleven collared and four white-lipped peccaries suggest that peccaries have a small relative stomach volume compared to other foregut fermenters, which implies a comparatively lower fermentative capacity and thus forage digestibility. The forestomach could enable peccaries to deal, in conjunction with their large parotis glands, with certain plant toxins (e.g. oxalic acid). The finding of sand being trapped in the forestomach blindsacs could indicate a disadvantage of the peccary forestomach design. The relevance of the forestomach to peccaries remains enigmatic

    Quantifying male-biased dispersal among social groups in the collared peccary (Pecari tajacu) using analyses based on mtDNA variation.

    Get PDF
    International audienceRecent advances in the statistical analysis of microsatellite data permit calculation of sex-specific dispersal rates through sex- and age-specific comparisons of genetic variation. This approach, developed for the analysis of data derived from co-dominant autosomal markers, should be applicable to a sex-specific marker such as mitochondrial DNA. To test this premise, we amplified a 449 bp control region DNA sequence from the mitochondrial genome of the collared peccary (Pecari tajacu), and estimated intra-class correlations among herds sampled from three Texas populations. Analyses on data partitioned by breeding group showed a clear signal of male-biased dispersal; sex-specific fixation indices associated with genetic variation among social groups within populations yielded values for females (F(GP)=0.91), which were significantly larger than values for males (F(GP)=0.24; P=0.0015). The same general pattern emerged when the analyses were conducted on age classes (albeit nonsignificantly), as well as categories of individuals that were predicted a posteriori to be dispersers (adult males) and philopatric (adult females and all immatures). By extending a previously published methodology based on biparentally inherited markers to matrilineally inherited haploid data, we calculated sex-specific rates of contemporary dispersal among social groups within populations (m(male symbol)=0.37). These results support the idea that mitochondrial DNA haplotype frequency data can be used to estimate sex-specific instantaneous dispersal rates in a social species
    corecore