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tajacu) using analyses based on mtDNA variation 2 
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Word count: 4532 24 

Abstract 25 

Recent advances in the statistical analysis of microsatellite data permit calculation of sex-specific 26 

dispersal rates through sex-and age-specific comparisons of genetic variation.  This approach, 27 

developed for analysis of data derived from co-dominant autosomal markers, should be 28 

applicable to a sex-specific marker such as mitochondrial DNA.  To test this premise, we 29 

amplified a 449bp control region DNA sequence from the mitochondrial genome of the collared 30 

peccary (Pecari tajacu), and estimated intra-class correlations among herds sampled from 3 31 

Texas populations.  Analyses on data partitioned by breeding group showed a clear signal of 32 

male-biased dispersal; sex-specific fixation indices associated with genetic variation among 33 

social groups within populations yielded values for females (FGP = 0.91) which were 34 

significantly larger than values for males (FGP = 0.24; p = 0.0015).  The same general pattern 35 

emerged when the analyses were conducted on age classes (albeit nonsignificantly), as well as 36 

categories of individuals which were predicted a posteriori to be dispersers (adult males) and 37 

philopatric (adult females and all immatures).  By extending a previously published methodology 38 

based on bi-parentally-inherited markers to matrilineally-inherited haploid data, we calculated 39 

sex-specific rates of contemporary dispersal among social groups within populations (m♂ = 0.37).  40 

These results support the idea that mitochondrial DNA haplotype frequency data can be used to 41 

estimate sex-specific instantaneous dispersal rates in a social species. 42 



Cooper et al. 

Introduction 43 

 Sex bias in natal dispersal is common; in most mammalian species, males are dispersers 44 

while females are philopatric, and the opposite trend is exhibited in birds (Greenwood 1980).  45 

Exploring why the sexes differ in their dispersal patterns can shed light on the evolutionary 46 

causes of dispersal in general (Goudet et al. 2002), and accurate characterization of dispersal 47 

behavior is integral to our understanding of the social structure, mating system, and population 48 

genetic structure of a species.  Yet detection of sex-biased dispersal can be tricky because a 49 

dispersal event may occur once in an animal’s lifetime, and such events can be difficult to 50 

observe directly. 51 

 52 

Measuring dispersal 53 

 In the last few decades molecular genetics has provided a means of investigating sex-biased 54 

dispersal within and among populations (reviewed in Lawson-Handley and Perrin 2007).  55 

Several powerful approaches have been developed to detect individual dispersers through 56 

assignment tests or to characterize general patterns of dispersal through summary statistics of 57 

population genetic structure (F-statistics, relatedness).  Most of these approaches utilize 58 

autosomal microsatellites as molecular markers, either alone (Goudet et al. 2002; Mossman and 59 

Waser 1999; Petit et al. 2001; Waser et al. 2001) or in tandem with a uni-parentally inherited 60 

marker such as mitochondrial DNA (mtDNA) or a Y chromosome locus (Escorza-Trevino and 61 

Dizon 2000; Girman et al. 1997).  The expectation inherent to all these approaches is that greater 62 

genetic structure will be evident in the philopatric sex compared to the dispersing sex, thus 63 

comparisons of sex-specific FST estimates should reveal the direction (and suggest the relative 64 

strength) of sex-bias in dispersal (Goudet et al. 2002). 65 
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   Because mitochondrial DNA is matrilineally inherited, it is commonly used to infer female-66 

biased dispersal rates (Prugnolle and de Meeus 2002).  When mtDNA haplotype distribution 67 

patterns are examined in isolation, inferences can be made about female dispersal behavior 68 

without respect to males, but this approach is qualitative and not widely applied (Hoelzer et al. 69 

1994).  However, it is possible to use mtDNA alone to infer the relative dispersal of both sexes 70 

by extending methods developed for autosomal, bi-parentally inherited markers.  For instance, 71 

the comparisons of sex-specific population differentiation from haplotype frequency data can 72 

indicate which sex disperses more (Escorza-Trevino and Dizon 2000; Yang et al. 2003).  73 

 74 

Using sex-specific fixation indices to estimate instantaneous dispersal rates 75 

 Vitalis (2002) developed a method to quantitatively measure sex bias in instantaneous 76 

dispersal rates using data from bi-parentally inherited markers such as microsatellites.  This 77 

approach allows the inference of sex-specific dispersal rates by comparing sex-specific estimates 78 

of genetic differentiation (FST) measured before and after dispersal.  This intuitive method can be 79 

further extended to incorporate the hierarchical structure within social species (Fontanillas et al. 80 

2004), as it has been recognized that social organization can strongly influence correlations of 81 

gene frequencies (Chesser 1991; Chesser and Baker 1996; Slatkin and Voelm 1991; Sugg and 82 

Chesser 1994; Vigouroux and Couvet 2000).  Herein we develop and use an extension of the 83 

Vitalis’ (2002) method to estimate instantaneous dispersal rates through analyses of mtDNA 84 

haplotype distribution patterns in a social mammal, the collared peccary (Pecari tajacu, family 85 

Tayassuidae).   86 

 We sampled extensively within three populations separated by long distances, with the goal 87 

of quantifying local dispersal among breeding groups within populations.  We then compared 88 
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sex- and age-specific estimates of population differentiation based solely on mtDNA haplotype 89 

frequencies, using probability based estimates of intra-class correlations of gene frequencies 90 

among social groups within populations.  We used a resampling approach to test for the 91 

significance of the observed age and sex-bias in dispersal.  Last, the fixation indices generated by 92 

these analyses were used to calculate single-generation sex-specific dispersal rates.  Heretofore 93 

mtDNA has been used primarily to infer female dispersal patterns, but we demonstrate that this 94 

matrilineally-inherited genetic marker can be used to quantify male dispersal rates in the absence 95 

of nuclear population genetic data. 96 

 97 

Materials and Methods 98 

Study species 99 

 The collared peccary is a socially complex, pig-like ungulate that forms stable, mixed sex 100 

herds of 3 to 30 individuals (Sowls, 1978).  These groups associate throughout the year and 101 

vigorously defend territories against other social groups (Bissonette 1982; Hellgren et al. 1984; 102 

Ellisor and Harwell 1969).  Herds are socially cohesive and attempts to immigrate may be met 103 

with aggression, although direct observational data on dispersal behavior are still scarce.  Male 104 

exchange between groups and solitary wandering of both sexes has been observed but natal 105 

dispersal has not been adequately described (Day 1985; Ellisor and Harwell 1969; Gabor and 106 

Hellgren 2000).  Heretofore little population genetic data existed for P. tajacu (but see Gongora 107 

et al. 2006).  Theimer and Keim (1994) utilized mtDNA variation to measure sequence 108 

divergence and geographic partitioning in Arizona populations, but their samples were not 109 

associated with social groups.  There was sufficient heterogeneity in mtDNA haplotype 110 

distribution to indicate limited female dispersal across regions (rather than among neighboring 111 
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herds as is considered here), although it was not clear if the patterns observed were also a 112 

signature of founding events (Theimer and Keim 1994). 113 

 114 

Sampling 115 

 Data were collected from three wild populations of P. tajacu in Texas.  In the mid-1990s, 116 

102 whole blood samples were collected from the Chaparral Wildlife Management Area 117 

(CWMA) in south Texas (Gabor and Hellgren 2000).  These samples were taken from live-118 

trapped animals from 13 social groups, but not all group members were sampled.  In 2005, we 119 

collected 31 ear snip tissue samples from live-trapped animals from 4 groups in the Welder 120 

Wildlife Refuge (WWR) in south Texas.  In 2006-2007 we similarly sampled 134 animals from 121 

13 groups in Big Bend Ranch State Park (BB) in west Texas, along the Texas-Mexico border. 122 

The WWR and BB populations were sampled extensively; every social group at these locations 123 

was identified through direct and remote camera observation and trapped in large corrals over 124 

several sessions.  Groups ranged in size from 2 to 18 animals and mean group size was 8.9.  125 

Individuals were uniquely marked with numbered ear tags and the strongest possible effort was 126 

made to trap and sample every unmarked individual.  All samples include associated data on age 127 

class (adult, subadult, juvenile, infant), sex, territory location and social group affiliation.  Age 128 

class was assigned according to behavior and morphological traits such as pelage, body size and 129 

testicular development.  Individuals exhibiting immature characteristics such as ginger or spotted 130 

pelage, undescended or partially descended testicles, adult-oriented following behavior, or 131 

estimated body size of less than 9 kg were classed as infants or juveniles, while individuals 132 

which weighed 10-13 kg were classed as “subadults” that were on the cusp of sexual maturity.  133 

Whole blood samples were frozen at -20°C, and tissue samples were stored in lysis buffer at 134 
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room temperature until DNA was extracted for long-term storage at 4°C. 135 

 136 

Genetic analysis 137 

 Blood clot samples (~ 0.5 g) were digested by rotating for 12 hours at 55°C in 750 µL of 138 

lysis buffer (100 mM Tris-Cl pH 8, 10 mM EDTA, 1% SDS, ddH2O), 40 µL of proteinase K (10 139 

mg/mL) and 2 µL of streptokinase (10 U/µL).  Tissue samples (~ 5 X 5 mm) were digested by 140 

rotating for 24 hours at 55°C in 750 µL of lysis buffer and 20 µL of proteinase K (10 mg/mL).  141 

Genomic DNA was extracted from blood using a standard phenol-chloroform method, and from 142 

tissue samples using either a phenol-chloroform-isopropanol method or ammonium acetate 143 

method (Sambrook and Russell 2001).  All DNA precipitations were washed twice in 70% 144 

ethanol, and DNA pellets were resuspended in 250 µL of TLE (10 mM Tris-Cl, 0.1 mM EDTA). 145 

A 449 bp region between sites 15,390 and 15,900 of the collared peccary mtDNA D-loop was 146 

amplified from genomic DNA using porcine primers (Alves et al. 2003).  This sequence lies in 147 

the hypervariable 5’ end of the mitochondrial control region and does not code for any known 148 

protein product.  PCR volumes were 25 µL and contained final concentrations of the following 149 

reagents: 1.5 mM MgCl2; 0.5 µM each primer; 0.21 mM dNTPs; 1.25 U Taq polymerase (NEB).  150 

PCRs were performed in an Eppendorf MasterCycler using the following temperature profile: 151 

denaturation for 3 min. at 94° C, followed by 30 cycles of 94° C for 4 s, 55° C for 4 s, and 72° C 152 

for 12 s; finishing with a 15 min. extension step at 72° C.  PCR products were cleaned using a 153 

low sodium protocol; 28 µL of a mixture containing 500 ml of absolute ethanol and 20 µL of 3M 154 

NaOAc (pH 5.2) was added to each sample, shaken for 15 min, and centrifuged at 2051 g for 35 155 

min.  This step was followed by 70% ethanol precipitation under centrifugation (twice) and 156 

resuspension in 20 µL ddH20.   157 
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 PCR products were then directly sequenced in both directions using Big Dye 3.1 158 

chemistry.  Sequencing products were purified using the low sodium protocol described above, 159 

and then electrophoresed using an AB Prism 3730XL sequencer (Applied Biosystems).  160 

Sequence data were aligned and edited with Sequencher 4.5 (Gene Codes).  Nuclear copies of 161 

mtDNA genes (numts) can greatly confound evolutionary analyses, and we avoided numts using 162 

methods described in Triant and DeWoody (2007).  For example, a few individuals (<5%), 163 

harbored apparently heterozygous sites so we reamplified their DNA and completely 164 

resequenced the amplicons in both directions.  In every case, this procedure completely resolved 165 

the mismatch and suggested the initial discrepancy was probably a result of Taq error. 166 

 We converted sequences into NEXUS format and imported them into PAUP* 4.0 167 

(Swofford 2003) for haplotype assignment.  Haplotypes were determined through reconstruction 168 

of unrooted phylogenetic trees using a neighbor-joining algorithm.  Direct sequencing of a sub-169 

set of the CWMA population revealed that some of the mtDNA haplotypes could be 170 

discriminated by restriction digest with the MboI enzyme, but all individuals from WWR and BB 171 

were typed by direct sequencing.   172 

 173 

Statistical analyses 174 

 Among-populations differentiation 175 

MtDNA haplotype frequencies were calculated by hand for all three populations.  Genetic 176 

differentiation among populations was inferred from FST estimates (Weir and Cockerham 1984) 177 

and exact tests of population differentiation (Raymond and Rousset 1995) using the software 178 

package Arlequin Version 3.1 (Excoffier et al. 2005).  For the latter, p-values were estimated 179 

from a Markov chain set to 110,000 steps including 10,000 dememorization steps.  All analyses 180 
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were based on pure haplotype frequency data rather than nucleotide differences.  181 

 182 

  Within-populations differentiation 183 

 Because P. tajacu populations are subdivided into breeding groups, we incorporated 184 

breeding group as a hierarchical level.  We calculated identity probabilities by simple counting of 185 

identical pairs of genes at different hierarchical levels (Q1 for pairs of genes within groups, Q2 186 

for pairs of genes sampled among groups within populations, and Q3 for pairs of genes sampled 187 

in different populations).  We then estimated the intra-class correlations by taking appropriate 188 

ratios of identity probabilities, weighted according to the number of pairs in each sample (see 189 

Rousset 2007), following the definitions of F-statistics as functions of identity probabilities 190 

between pairs of genes (see Appendix).  Since the distances among populations are large in this 191 

study (range of 225 km to 945 km between the three sampling sites), we considered the three 192 

populations as independent replicates in the analysis, and we restricted our analyses to estimate 193 

within-population dispersal.  We focused on the level of genetic differentiation among social 194 

groups within populations as measured by the parameter FGP.  The notation is adapted from 195 

Wright (1965).  This approach is different from that of Fontanillas et al. (2004) who considered 196 

dispersal both among populations and among breeding groups.  Although the samples from each 197 

site were collected in different years, FGP estimates do not depend upon identity between pairs of 198 

genes from different populations and temporally discontinuous sampling is therefore unlikely to 199 

undermine the approach.  We employed a bootstrapping procedure to calculate confidence limits 200 

around estimates of FGP for each class of individuals.  Using the statistical software package R 201 

(R Development Core Team 2008), we generated 25,000 bootstrap samples, with each sample 202 

being produced by random resampling (with replacement) of the 255 nucleotide sites from the 203 
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mtDNA haplotypes (254 sites + 1 indel).  This allowed us to calculate FGP estimates for each 204 

sample and generate a distribution; confidence intervals endpoints were then calculated as the 205 

2.5% and the 97.5% percentiles of this distribution.  This procedure is strictly equivalent to that 206 

implemented in the software package Arlequin Version 3.1 (Excoffier et al. 2005) to generate 207 

95% confidence limits by bootstrapping genetic differentiation values in a locus-by-locus 208 

AMOVA (see, e.g., Langergraber et al. 2007).   209 

 210 

  Class-specific analyzes 211 

  Dispersal is a trait that can be partitioned into pre- and post-dispersal conditions, 212 

therefore our first analysis partitioned the data by age.  We performed independent analyses on 213 

data partitioned into two age sets, respectively for adults and immatures (the latter including both 214 

juveniles and infants).  Subadults were classed as immatures and then as adults in sequential 215 

analyses.  Each age-specific data set was composed of individuals assigned to their respective 216 

populations and social groups, and intra-class correlations (FGP) were calculated among social 217 

groups within populations from identity probabilities of pairs of genes (see above).  Only those 218 

social groups containing a representative individual from each treatment were included in the 219 

analysis (e.g. in the independent analyses on adult and immature data sets, a social group must 220 

have contained at least 1 adult and 1 immature to be included).  We then duplicated the analysis 221 

with the data partitioned by sex rather than age.  From these results, we were able to distinguish a 222 

putative class of dispersing individuals, from a putative class of non-dispersers.  We therefore 223 

performed a posteriori, independent analyses on data sets of putative dispersers and non-224 

dispersers. 225 

 226 
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 We used a resampling scheme after Goudet et al. (2002) to test whether the estimated 227 

fixation indices among social groups within replicate populations (FGP) for specific classes (age, 228 

sex, or putative dispersal class) departed significantly from the null hypothesis that dispersal is 229 

independent from the class of individuals.  Resampling tests were all performed with the 230 

statistical software package R (R Development Core Team 2008).  For each class, we generated 231 

25,000 randomized datasets, by re-assigning the age (or sex, or dispersal class) of each haplotype 232 

randomly within each breeding group.  By doing so, we kept the number of individuals from 233 

each class constant within each breeding group.  We calculated the probabilities of identities 234 

between pairs of genes for each resampled dataset, and obtained the distribution of class-specific 235 

FGP estimates under the null hypothesis that dispersal behavior or capability is independent from 236 

age, sex, or dispersal class.  We then calculated p-values as the proportion of times where FGP 237 

from the randomized datasets was larger than or equal to the observed FGP on the original 238 

dataset.  239 

 240 

Estimating dispersal 241 

 To calculate a sex-specific dispersal rate within a single generation, we adapted Vitalis’ 242 

(2002) approach and extended it to mtDNA data.  In Vitalis (2002), the ratio of the sex-specific 243 

differentiation evaluated after juvenile dispersal (
ˆ F GP

XX

) divided by the differentiation evaluated 244 

before dispersal (
ˆ F GP

*
) gives the sex-specific dispersal rate.  Appendix 1 shows that this 245 

relationship also applies to uni-parentally inherited markers, and:  246 

 247 

   ˆ m X ≈1−
ˆ F GP

XX

ˆ F GP

*   for all X ∈ {♂,♀}    (1) 248 
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 249 

gives the sex-specific dispersal rate.  Here we use this simple model to compare fixation indices 250 

before and after dispersal at the within-population level, focusing on dispersal of individuals 251 

among breeding groups.  This equation assumes that the number of breeding groups, n, is large 252 

(infinite); by considering an infinitely large n, we slightly overestimate dispersal rate mx (e.g., 253 

10% relative bias with n = 10).  We estimated instantaneous sex-specific dispersal rates for P. 254 

tajacu by applying equation 1, using fixation indices estimates for adult males, adult females and 255 

all immatures of both sexes (Table 2).  Confidence intervals for dispersal rates were obtained by 256 

means of a bootstrap procedure, similar to that used for FGP (see above), modified as follows.  257 

For each bootstrap sample, FGP estimates were calculated for adult males (resp. adult females) 258 

and all immatures, and male- (resp. female-) specific migration rates were calculated using 259 

equation (1).  Confidence intervals for sex-specific dispersal rates were then derived from the 260 

0.025 and 0.975 percentiles of the bootstrap distribution. 261 

 262 

Results 263 

mtDNA haplotype distribution patterns 264 

 A total of 18 nucleotide sites were variable (17 substitutions and a single indel) over 449 265 

bp.  We recovered 6 mtDNA haplotypes from 267 individual collared peccaries among the 3 sites 266 

sampled (Table 1).  Haplotype A was observed in all sampling sites, but haplotype B was unique 267 

to the CWMA, and haplotype C was found in both the WWR and the CWMA.  The BB 268 

population was almost fixed for haplotype E (96%).  Haplotypes F and G were only found in the 269 

CWMA, and were represented by single individuals (both males). 270 

 271 
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 We overlaid mtDNA haplotype distribution onto the social group territory distribution for 272 

all populations.  At the local level, haplotype distribution did not exhibit geographic structuring 273 

in the CWMA or the WWR; all haplotypes present at each sampling site were found distributed 274 

throughout that site.  In the BB population, haplotype A was found only in the eastern portion of 275 

the sampling site.  At the regional level across Texas, we observed significant population 276 

differentiation.  Pairwise FST estimates ranged from 0.31 to 0.86 between populations and 277 

pairwise exact tests of population differentiation were highly significant (p = 0.001), indicating 278 

that these populations are significantly divergent from one another. 279 

 280 

Patterns of genetic variation revealed by F-statistics as functions of identity probabilities  281 

  Because dispersal status is often dependent upon age, we tested for an age bias in 282 

dispersal.  To that end, we pooled infants and juveniles (categorized hereafter as “immatures”) in 283 

one class, and adults in another class.  It was not clear if individuals categorized as subadults 284 

were sufficiently developed to be considered as adults, therefore we performed a preliminary 285 

analysis on adult-only and immature-only data sets partitioned into social groups, which revealed 286 

a decrease in FGP when subadults were included in the adult class (not shown).  This result 287 

indicates that individual genetic variation in the subadult class is apportioned among rather than 288 

within social groups, and therefore subadults were classed as adults in all subsequent analyses.  289 

We estimated fixation indices among social groups for each sex, with individuals partitioned into 290 

known breeding groups (Table 2).  It is clear that FGP for adults (0.30 [0.03, 0.38]) is much 291 

smaller than that for immatures (0.60 [0.60, 1.00]), as would be expected if the adult class 292 

included dispersed individuals.  To test for significance of these quantitative differences, we used 293 

a randomization approach, and generated randomized data sets by assigning an age randomly to 294 
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each mtDNA haplotype.  Under the null hypothesis that dispersal is not age-biased, we expect 295 

the observed FGP of adults and immatures not to depart significantly from the null distribution.  296 

For adults, there was a large proportion of randomized data sets with a differentiation among 297 

groups within populations (FGP) larger than the observed, although this proportion did not 298 

achieve significance (p = 0.79; Fig. 1A).  In contrast, for immatures of both sexes, there was only 299 

a small proportion of randomized data sets giving a FGP larger than the observed, although the 300 

test was not significant (p = 0.20; Fig. 1B).  In general terms, these results clearly indicate a 301 

greater amount of dispersal among social groups for adults when compared to immatures.   302 

 To test for a signal of sex-biased dispersal, intra-class correlations (FGP) were estimated 303 

for each sex with individuals partitioned into known breeding groups (Table 2).  It can be seen 304 

from these results that FGP among social groups is much smaller for males (0.23 [0.09, 0.36]) 305 

than it is for females (0.90 [0.87, 1.00]), which indicates that even when pre-dispersal age 306 

individuals are included in the male class the sex difference is still apparent.  To test the 307 

significance of the sex difference, we used a randomization approach identical to the one 308 

described for age bias, and generated randomized data sets by assigning a sex randomly to each 309 

mtDNA haplotype.  For males, there was a very large proportion of randomized data sets with a 310 

larger FGP than the observed (p = 0.98; Fig. 1C).  In contrast, for females, there was only a very 311 

small proportion of randomized data sets giving a FGP larger than the observed, and the test was 312 

therefore highly significant (p < 0.001; Fig. 1D).  These results suggest that dispersal is strongly 313 

male-biased in P. tajacu. 314 

 The inferred dispersal pattern of P. tajacu being of adult male dispersal, we conducted a 315 

further analysis, a posteriori, on data partitioned by putative dispersal condition:  the data were 316 

partitioned into “dispersers” (adult males) and “philopatrics” (immature males and all females) 317 
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and separate analyses performed on individuals assigned to breeding groups.  As expected, FGP 318 

for the philopatric class was much larger (0.76 [0.73, 0.99]) than was seen for adult males (0.24 319 

[0.07, 0.36]).  For adult males, there was a very large proportion of randomized data sets with a 320 

FGP larger than the observed (p = 0.99; Fig. 1E).  In contrast, for putative non-dispersers, the test 321 

was highly significant, with very few datasets giving a FGP larger than the observed (p < 0.001; 322 

Fig. 1F). 323 

 324 

Dispersal rate estimates 325 

 The instantaneous sex-specific dispersal rate among social groups within populations was 326 

estimated using equation (1).  We used the FGP estimates among social groups within populations 327 

(Table 2) for adult males (dispersers) (FGP = 0.24), for adult females (FGP = 0.91), and for pre-328 

dispersal individuals of both sexes (also categorized as “immature”; FGP = 0.60).  This yielded a 329 

male-specific dispersal rate estimate (m♂) of 0.37 [0.32, 0.65].  Equation (1) only makes sense if 330 

there is a significant difference between FGP measured after dispersal and before dispersal. Since 331 

the confidence limits of FGP for adult females ([0.88; 1.00]) and immatures ([0.60; 1.00]) largely 332 

overlap, we were unable to calculate a female-specific dispersal rate from equation (1). 333 

 334 

Discussion 335 

 We have demonstrated that maternally-inherited genes can be used to describe the 336 

contemporary dispersal patterns of males (and the overall dispersal patterns of females) within an 337 

analytical framework based on intra-class genetic correlations.  This was accomplished through 338 

comparisons of age- and sex-specific intra-class correlations partitioned hierarchically within 339 

populations.  A second aim was to show that instantaneous sex-specific dispersal rates can be 340 
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calculated from sex-specific estimates of differentiation using single-locus haplotypic data.   341 

 342 

Dispersal in Pecari tajacu 343 

 In our study we quantitatively demonstrated that dispersal in collared peccaries is 344 

strongly biased toward males, and that approximately one-third of males dispersed from their 345 

natal groups in this single generation.  This is a minimum estimate, as some individuals die 346 

before or during dispersal, and the lack of mtDNA variation undoubtedly prevented our detection 347 

of dispersal between some groups.  Moreover, the pronounced local genetic structure indicates 348 

that males preferentially disperse over short distances, perhaps into neighboring herds; this is 349 

congruent with trapping data (Gabor and Hellgren 2000).  The results from the age-based 350 

analysis indicate that dispersal in this species is usually accomplished by subadults (18-24 351 

months).  At this age, they have not reached their full body mass and may be forced out by larger, 352 

resident males.  353 

 354 

Measuring dispersal biases 355 

 Our approach allowed us to organize data into age classes, sex classes, social groups, and 356 

populations and then test hypotheses about the dispersal rate of each class.  For example, by 357 

performing separate analyses on sex-specific datasets, we were able to both detect a sex-bias in 358 

dispersal and also determine which sex contributed to the pattern.  Because the method relies on 359 

contrasts of sex-specific estimates of population differentiation, rather than absolutes, the power 360 

to detect differences among hierarchies is limited only by the intensity of the bias (Vitalis 2002).  361 

In this study there was sufficient contrast between pre- and post-dispersal age classes in males to 362 

provide a direct estimate of the instantaneous dispersal rate.   363 
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 The method presented here should be applicable to any species in which there is a bias in 364 

dispersal, whether that bias is conditional on sex, age, or some other phenotype, so long as trait 365 

variation can be readily distinguished and assigned to different hierarchical levels.  This 366 

approach does not impose spatial distance (or a distance proxy) onto the analysis, as is seen in 367 

other approaches such as spatial autocorrelation (Smouse and Peakall 1999).  Such approaches 368 

force investigators to make assumptions about how distance interacts with social organization 369 

when it may be inappropriate or irrelevant (e.g., when sampling a highly mobile species, or at a 370 

scale where an individual is equally likely to disperse to any location under consideration).  Our 371 

approach removes metric distance and location from the equation, and shifts the focus onto how 372 

the genetic variation is distributed across space irrespective of distance, which is especially 373 

useful for addressing questions of how sociality influences dispersal. 374 

 375 

Measuring sex-biased dispersal with uni-parentally inherited markers 376 

 The approach discussed herein relies upon contrasts:  we compared the genetic structure 377 

of the pre-dispersal class to the sex-specific genetic structure of the post-dispersal class to 378 

estimate instantaneous dispersal within a single generation (Lawson-Handley and Perrin 2007).  379 

When autosomal markers are used, the expectation is that genetic structure will be more apparent 380 

in the pre-dispersal class compared to the post-dispersal class as a whole, and even more 381 

apparent in the non-dispersing sex (whichever sex it may be).  When a uni-parentally inherited 382 

marker is used the expectation is similar, but not identical, to what is seen for bi-parentally 383 

inherited markers.  For instance, under a system of male-biased dispersal mtDNA haplotypes are 384 

carried within males into breeding groups, but males do not contribute mtDNA to the subsequent 385 

generation and thus the contrast between pre-dispersal individuals and adult males is substantial.  386 
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However, under a system of female-biased dispersal haplotypes would be re-distributed within 387 

and among populations each generation.  Thus a contrast between genetic differentiation for pre- 388 

and post-dispersal individuals would be difficult to detect.  As a result, this approach is most 389 

useful for deriving instantaneous sex-specific dispersal rates with mtDNA data under a system of 390 

male-biased dispersal, or a double uniparental system of mitochondrial DNA inheritance (e.g. 391 

Mytilus mussels).  Here we use mtDNA haplotypes as a tag, but any physical or genetic tag that 392 

could be identified in males and females before and after dispersal may play the same role as 393 

mtDNA markers in this context.  394 

 We have demonstrated that mtDNA can be used in isolation to estimate sex-specific dispersal 395 

in the current generation,.  The main caveat is that mtDNA is, in effect, a single genetic marker 396 

that might be biased by selection (Bazin et al. 2005).  Yet, because we based our analyzes upon 397 

differences of variation in male and female within a single generation, it is difficult to imagine a 398 

pattern of selection that would undermine the approach. 399 
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Table 1 Distribution of mtDNA haplotypes in three wild populations of P. tajacu in Texas, across sex and age classes. 499 

    Sex Age class 

Population Haplotype n Freq. F M I J A 

WWR C 24 0.77 10 14 1 6 17 

 A 7 0.23 3 4 0 3 4 

CWMA B 43 0.43 24 19 1 10 32 

 A 38 0.38 21 17 1 9 28 

 C 19 0.19 9 10 3 2 14 

 G 1 0.01 0 1 0 0 1 

 F 1 0.01 0 1 0 0 1 

BB E 129 0.96 61 68 13 35 81 

 A 5 0.04 3 2 0 0 5 

n: sample size; F: females, M: males; I: infants; J: juveniles; A: adults (including subadults) 500 
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Table 2.  Intra-class correlations for pairs of genes among social groups within replicate populations estimated by means of identity 501 

probabilities. FGP estimates used to calculate sex-specific migration rates from equation (1) are given in bold.  Confidence intervals are 502 

noted in brackets, and represent the 2.5% and the 97.5% quantiles produced by bootstrapping nucleotide sites over 25,000 samples. P-503 

values give the results of significance tests for differentiation among groups.  They were calculated as the proportion of times where 504 

FGP from randomized datasets was larger than or equal to the observed FGP on the original dataset.  Randomized datasets were 505 

obtained by by permuting haplotypes at random among groups within populations (25,000 permutations). 506 

Category FGP estimate p-value 

All data 0.50 [0.46, 0.59] p < 0.001 

Adults 0.30 [0.03, 0.38] p < 0.001 

Immatures 0.60 [0.60, 1.00] p < 0.001 

Females 0.90 [0.87, 1.00] p < 0.001 

Males 0.23  [0.09, 0.36] p < 0.001 

Adult females 0.91 [0.88, 1.00] p < 0.001 

Adult males (dispersers) 0.24  [0.07, 0.36]  p = 0.013 

Philopatrics 0.76 [0.73, 0.99] p < 0.001 



Cooper et al. 

26 
 

Figure Legends 507 

 508 

 509 

Figure 1.  Re-sampled data null distributions for each class of individuals.  Observed FGP for 510 

each analysis represented by hatched vertical line. Significance tested over 25,000 permutations.  511 

Histogram class heights are represented as black dots, and the smoothed density was obtained 512 

using the Average Shifted Histogram (ASH) algorithm (Scott 1992) with smoothing parameter m 513 

= 20. 514 
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Appendix 515 

Sex-specific differentiation before and after (instantaneous) dispersal 516 

F-statistics are defined as intra-class correlations for the probability of identity in state 517 

(IIS correlations) (Cockerham and Weir 1987; Rousset 1996). Yet, the infinite allele model 518 

(IAM) provides the value of the probability of identity by descent (IBD probabilities) and in the 519 

low mutation rate limit, for two given classes, IIS and IBD correlations converge to the same 520 

value (Slatkin 1991; Rousset 1996). Thus, the properties of F-statistics can be deduced from the 521 

properties of intra-class correlations for IBD probabilities (Rousset 1996). 522 

In the following, we consider mitochondrial DNA (mtDNA) markers, i.e. haploid 523 

markers, transmitted by females only.  Let Q1
XY

, Q2
XY

 and Q3
XY

 be the IBD probability of two 524 

mtDNA gene copies sampled from two individuals of sex X and Y after dispersal among 525 

individuals within the same breeding group, among breeding groups within the same 526 

populations, and among distinct populations, respectively.  These individuals may be two males, 527 

two females, or one male and one female.  Let Q1
*
, Q2

*
 and Q3

*
  be the corresponding IBD 528 

probabilities for gene copies sampled before dispersal.  For pairs of genes sampled before 529 

dispersal there is no need to consider distinct coefficients for different pairs of individuals of the 530 

same or opposite sex (Vitalis 2002).  531 

Let us consider an infinite island model of population structure (Wright 1951) where each 532 

population is isolated and further subdivided into n breeding groups, and where dispersal among 533 

breeding groups is achieved by juveniles, before reproduction.  Here, because we consider that 534 

populations are independent, we restrict our analyses to estimate within-population dispersal 535 

only.  We therefore focus on the IBD probabilities among individuals within social groups ( Q1
XY

 536 

andQ1
*
), and among social groups within populations (Q2

XY
 and Q2

*
), and further consider the IBD 537 
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probabilities between pairs of genes from distinct populations (Q3
XY

 and Q3
*
) to be nil in the 538 

model.  A migrant individual in a breeding group is equally likely to come from any of the 539 

n −1( ) other breeding groups.  Generations do not overlap.  Let mX  denote the probability that 540 

an individual of sex X has immigrated.  Each generation, after migration, the frequency of pairs 541 

of individuals taken at random in one breeding group that come from a single group before 542 

migration is aXY = 1−mX( )1−my( )+ mX ⋅mY n −1( ), for pairs of individuals of sex X and Y with 543 

X ∈ {♂,♀} and Y ∈ {♂,♀}.  Conversely, the frequency of pairs of individuals taken at random 544 

from two breeding group after migration that originate from the same group before migration is 545 

bXY = 1− aXY( ) n −1( ) (see, e.g., Rousset 1996).  We assume that the mutation rate is low (i.e., µ  546 

<< mX), so that virtually no mutation arises over a single generation. 547 

The genes sampled among individuals after dispersal in a breeding group at any 548 

generation come from the same breeding group before dispersal with probability aXY and from 549 

different breeding group with probability (1 – aXY).  These mtDNA gene copies are then IBD 550 

with probabilities Q1
*
 and Q2

*
, respectively.  Thus,  551 

Q1
XY = aXYQ1

* + 1− aXY( )Q2
*
.        (A.1) 552 

Similarly, for genes sampled before dispersal, 553 

Q2
XY = bXYQ1

* + 1−bXY( )Q2
*
.        (A.2) 554 

We can rewrite equations 1 and 2 as: 555 

Q1
XY = aXY Q1

* −Q2
*( )+Q2

*
,        (A.3) 556 

 and:  557 

Q2
XY = bXY Q1

* −Q2
*( )+Q2

*
.        (A.4) 558 

Subtracting equations A.3 and A.4, we obtain: 559 
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Q1
XY −Q2

XY( )= dXY Q1
* −Q2

*( ),                   (A.5) 560 

where dXY = aXY − bXY( ).  Rearranging equation A.4 gives: 561 

1−Q2
XY( )= 1−Q2

*( )− bXY Q1
* −Q2

*( ).           (A.6) 562 

Taking the ratio of equation A.6 over A.5 gives: 563 

1−Q2
XY

Q1
XY −Q2

XY
=

1

dXY

1−Q2
*

Q1
* −Q2

*
−

bXY

dXY

.               (A.7) 564 

Since we consider independent populations, the relevant parameter to infer dispersal among 565 

breeding groups is FGP.  From the definition of sex-specific F-statistics as appropriate ratios of 566 

sex-specific IBD probabilities (Vitalis 2002), we get: 567 

 FGP

*
=

Q1
* −Q2

*

1−Q2
*           (A.8) 568 

before dispersal, and: 569 

FGP

XY
=

Q1
XY −Q2

XY

1−Q2
XY          (A.9) 570 

after dispersal. We get from equation A.7: 571 

1

FGP

XY
=

1

dXY

1

FGP

*
−

bXY

dXY

 ,         (A.10) 572 

i.e., multiplying both sides by dXY ⋅ FGP

XY( ) and rearranging: 573 

FGP

XY

FGP

*
= dXY + bXY FGP

XY

  for all (X, Y) ∈ {♂,♀}      (A.11) 574 

which is equation 15 in Vitalis (2002) except that here it holds for mtDNA markers, and it does 575 

not assume equilibrium.  This relation is valid for any generation, for samples taken before and 576 

after dispersal.  The last term in the right-hand side of equation A.11 is negligible compared to 577 

dXY.   Thus, FGP

XX
 differs from FGP

*
 by a factor dXX = 1−mX n / n −1( )[ ]( )

2
≈ 1−mX( )

2
, for large n.  578 
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Therefore, taking the ratio of sex-specific FGP

XX
 evaluated after juvenile dispersal, over FGP

*
 579 

evaluated before dispersal gives the sex-specific migration rate: 580 

mX ≈1−
FGP

XX

FGP

*   for all X ∈ {♂,♀}                 (A.12) 581 

Following Rousset (2007), we estimated the intra-class correlations by taking appropriate 582 

ratios of identity probabilities, weighted according to the number of pairs in each sample. From 583 

the definitions of F-statistics as functions of identity probabilities between pairs of genes 584 

(equations A.8 and A.9), we get: 585 

 586 

 ˆ F GP

*
=

ˆ Q 1
* − ˆ Q 2

*

1− ˆ Q 2
*  , and         (A.13) 587 

ˆ F GP

XY
=

ˆ Q 1
XY − ˆ Q 2

XY

1− ˆ Q 2
XY ,         (A.14) 588 

where ˆ Q i
*
 and ˆ Q i

XY
 denote the estimates of identity probabilities between pairs of genes, 589 

calculated by simple counting of identical pairs of genes at the ith hierarchical level. An estimate 590 

of the sex-specific migration rate therefore reads: 591 

ˆ m X ≈1−
ˆ F GP

XX

ˆ F GP

*   for all X ∈ {♂,♀}                 (A.15) 592 
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