84 research outputs found

    Severe childhood malaria syndromes defined by plasma proteome profiles

    Get PDF
    BACKGROUND Cerebral malaria (CM) and severe malarial anemia (SMA) are the most serious life-threatening clinical syndromes of Plasmodium falciparum infection in childhood. Therefore it is important to understand the pathology underlying the development of CM and SMA, as opposed to uncomplicated malaria (UM). Different host responses to infection are likely to be reflected in plasma proteome-patterns that associate with clinical status and therefore provide indicators of the pathogenesis of these syndromes. METHODS AND FINDINGS Plasma and comprehensive clinical data for discovery and validation cohorts were obtained as part of a prospective case-control study of severe childhood malaria at the main tertiary hospital of the city of Ibadan, an urban and densely populated holoendemic malaria area in Nigeria. A total of 946 children participated in this study. Plasma was subjected to high-throughput proteomic profiling. Statistical pattern-recognition methods were used to find proteome-patterns that defined disease groups. Plasma proteome-patterns accurately distinguished children with CM and with SMA from those with UM, and from healthy or severely ill malaria-negative children. CONCLUSIONS We report that an accurate definition of the major childhood malaria syndromes can be achieved using plasma proteome-patterns. Our proteomic data can be exploited to understand the pathogenesis of the different childhood severe malaria syndromes

    Anti-Inflammatory Cytokines Predominate in Acute Human Plasmodium knowlesi Infections

    Get PDF
    Plasmodium knowlesi has entered the human population of Southeast Asia. Naturally acquired knowlesi malaria is newly described with relatively little available data, including data on the host response to infection. Therefore pre-treatment cytokine and chemokine profiles were determined for 94 P. knowlesi, and for comparison, 20, P. vivax and 22 P. falciparum, patients recruited in Malaysian Borneo. Nine, five and one patient with P. knowlesi, P. falciparum and P. vivax respectively had complicated malaria as defined by World Health Organisation. Patients with uncomplicated P. knowlesi had lower levels of the pro-inflammatory cytokines IL-8 and TNFα than those with complicated disease (both p<0.05, Dunn's post test, DPT). The anti-inflammatory cytokines IL-1ra and IL-10 were detected in all patients in the study. IL-1ra, the most abundant cytokine measured, correlated with parasitaemia in P. knowlesi (rs = 0.47, p =  <0.0001), P. vivax (rs = 0.61, p = 0.0042) and P. falciparum (rs = 0.57,p = 0.0054) malaria. IL-10 correlated with parasitaemia in both P. knowlesi (rs = 0.54, p =  <0.0001) and P. vivax (rs = 0.78, p =  <0.0001) infections. There were between group differences in soluble markers of macrophage activation (MIP-1β and MCP-1). P. knowlesi patients had significantly lower levels of MIP-1β than P. falciparum (DPT, p =  <0.01). Uncomplicated P. knowlesi patients had significantly lower levels of MCP-1 than uncomplicated P. falciparum patients (DPT, p =  <0.001). There was no significant difference between complicated and uncomplicated P. knowlesi infections. MCP-1, MIP-1β, IL-8 and TNFα increased in complicated P. knowlesi but decreased in complicated P. falciparum infections. Descriptions of human knowlesi malaria provide a comparative means to discover mediators of pathophysiology in severe P. knowlesi as well as P. falciparum malaria. Crucially, P. knowlesi may be the disease and experimental primate model for severe malaria

    Giemsa-stained thick blood films as a source of DNA for Plasmodium species-specific real-time PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study describes the use of thick blood films (TBF) as specimens for DNA amplification with the <it>Plasmodium </it>species-specific real-time PCR that was recently validated on whole blood samples.</p> <p>Methods</p> <p>The panel of 135 Giemsa-stained clinical TBFs represented single infections of the four <it>Plasmodium </it>species with varying parasite densities or only gametocytes, mixed infections, and negative samples and was stored for up to 12 years. Half of the Giemsa-stained TBF was scraped off by a sterile scalpel and collected into phosphate buffered saline. DNA was extracted with the Qiagen DNA mini kit with minor modifications. DNA was amplified with the 18S rRNA real-time PCR targeting the four <it>Plasmodium </it>species with four species-specific primers and probes in combination with one genus-specific reverse primer. Results of the PCR on TBF were compared to those of the PCR on whole blood and to microscopy.</p> <p>Results</p> <p>Correct identification for single species infections was obtained for all TBF samples with <it>Plasmodium falciparum </it>(n = 50), <it>Plasmodium vivax </it>(n = 25), <it>Plasmodium ovale </it>(n = 25) and in all but one samples with <it>Plasmodium malariae </it>(n = 10). Compared to whole blood samples, higher Ct-values were observed by PCR on TBF with a mean difference of 5.93. Four out of five mixed infections were correctly identified with PCR on TBF. None of the negative samples (n = 20) gave a PCR signal. PCR on TBF showed a detection limit of 0.2 asexual parasites/μl compared to 0.02/μl for whole blood. Intra-run variation was higher for PCR on TBF (%CV 1.90) compared to PCR on whole blood (%CV 0.54). Compared to microscopy, PCR on TBF generated three more species identifications in samples containing a single species and detected the same four mixed-infections.</p> <p>Conclusions</p> <p>Giemsa-stained TBFs are a reliable source of DNA for <it>Plasmodium </it>real-time PCR analysis, allowing applications in reference and research settings in case whole blood samples are not available.</p

    CD9 Tetraspanin Interacts with CD36 on the Surface of Macrophages: A Possible Regulatory Influence on Uptake of Oxidized Low Density Lipoprotein

    Get PDF
    CD36 is a type 2 scavenger receptor with multiple functions. CD36 binding to oxidized LDL triggers signaling cascades that are required for macrophage foam cell formation, but the mechanisms by which CD36 signals remain incompletely understood. Mass spectrometry analysis of anti-CD36 immuno-precipitates from macrophages identified the tetraspanin CD9 as a CD36 interacting protein. Western blot showed that CD9 was precipitated from mouse macrophages by anti-CD36 monoclonal antibody and CD36 was likewise precipitated by anti-CD9, confirming the mass spectrometry results. Macrophages from cd36 null mice were used to demonstrate specificity. Membrane associations of the two proteins on intact cells was analyzed by confocal immunofluorescence microscopy and by a novel cross linking assay that detects proteins in close proximity (<40 nm). Functional significance was determined by assessing lipid accumulation, foam cell formation and JNK activation in wt, cd9 null and cd36 null macrophages exposed to oxLDL. OxLDL uptake, lipid accumulation, foam cell formation, and JNK phosphorylation were partially impaired in cd9 null macrophages. The present study demonstrates that CD9 associates with CD36 on the macrophage surface and may participate in macrophage signaling in response to oxidized LDL

    Elevated Plasma Von Willebrand Factor and Propeptide Levels in Malawian Children with Malaria

    Get PDF
    In children with malaria plasma VWF and propeptide levels are markedly elevated in both cerebral and mild paediatric malaria, with levels matching disease severity, and these normalize upon recovery. High levels of both markers also occur in retinopathy-negative 'cerebral malaria' cases, many of whom are thought to be suffering from diseases other than malaria, indicating that further studies of these markers will be required to determine their sensitivity and specificity

    Assessment of the prozone effect in malaria rapid diagnostic tests

    Get PDF
    BACKGROUND: The prozone effect (or high doses-hook phenomenon) consists of false-negative or false-low results in immunological tests, due to an excess of either antigens or antibodies. Although frequently cited as a cause of false-negative results in malaria rapid diagnostic tests (RDTs), especially at high parasite densities of Plasmodium falciparum, it has been poorly documented. In this study, a panel of malaria RDTs was challenged with clinical samples with P. falciparum hyperparasitaemia (> 5% infected red blood cells). METHODS: Twenty-two RDT brands were tested with seven samples, both undiluted and upon 10 x, 50 x and 100 x dilutions in NaCl 0.9%. The P. falciparum targets included histidine-rich protein-2 (HRP-2, n = 17) and P. falciparum-specific parasite lactate dehydrogenase (Pf-pLDH, n = 5). Test lines intensities were recorded in the following categories: negative, faint, weak, medium or strong. The prozone effect was defined as an increase in test line intensity of at least one category after dilution, if observed upon duplicate testing and by two readers. RESULTS: Sixteen of the 17 HRP-2 based RDTs were affected by prozone: the prozone effect was observed in at least one RDT sample/brand combination for 16/17 HRP-2 based RDTs in 6/7 samples, but not for any of the Pf-pLDH tests. The HRP-2 line intensities of the undiluted sample/brand combinations with prozone effect (n = 51) included a single negative (1.9%) and 29 faint and weak readings (56.9%). The other target lens (P. vivax-pLDH, pan-specific pLDH and aldolase) did not show a prozone effect. CONCLUSION: This study confirms the prozone effect as a cause of false-negative HRP-2 RDTs in samples with hyperparasitaemia

    Examination of the shared genetic basis of anorexia nervosa and obsessive-compulsive disorder

    Get PDF
    Anorexia nervosa (AN) and obsessive-compulsive disorder (OCD) are often comorbid and likely to share genetic risk factors. Hence, we examine their shared genetic background using a cross-disorder GWAS meta-analysis of 3495 AN cases, 2688 OCD cases, and 18,013 controls. We confirmed a high genetic correlation between AN and OCD (rg = 0.49 ± 0.13, p = 9.07 × 10-7) and a sizable SNP heritability (SNP h2 = 0.21 ± 0.02) for the cross-disorder phenotype. Although no individual loci reached genome-wide significance, the cross-disorder phenotype showed strong positive genetic correlations with other psychiatric phenotypes (e.g., rg = 0.36 with bipolar disorder and 0.34 with neuroticism) and negative genetic correlations with metabolic phenotypes (e.g., rg = -0.25 with body mass index and -0.20 with triglycerides). Follow-up analyses revealed that although AN and OCD overlap heavily in their shared risk with other psychiatric phenotypes, the relationship with metabolic and anthropometric traits is markedly stronger for AN than for OCD. We further tested whether shared genetic risk for AN/OCD was associated with particular tissue or cell-type gene expression patterns and found that the basal ganglia and medium spiny neurons were most enriched for AN-OCD risk, consistent with neurobiological findings for both disorders. Our results confirm and extend genetic epidemiological findings of shared risk between AN and OCD and suggest that larger GWASs are warranted

    Modulation of innate immune responses at birth by prenatal malaria exposure and association with malaria risk during the first year of life.

    Get PDF
    BACKGROUND: Factors driving inter-individual differences in immune responses upon different types of prenatal malaria exposure (PME) and subsequent risk of malaria in infancy remain poorly understood. In this study, we examined the impact of four types of PME (i.e., maternal peripheral infection and placental acute, chronic, and past infections) on both spontaneous and toll-like receptors (TLRs)-mediated cytokine production in cord blood and how these innate immune responses modulate the risk of malaria during the first year of life. METHODS: We conducted a birth cohort study of 313 mother-child pairs nested within the COSMIC clinical trial (NCT01941264), which was assessing malaria preventive interventions during pregnancy in Burkina Faso. Malaria infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. Supernatant concentrations of 30 cytokines, chemokines, and growth factors induced by stimulation of cord blood with agonists of TLRs 3, 7/8, and 9 were measured by quantitative suspension array technology. Crude concentrations and ratios of TLR-mediated cytokine responses relative to background control were analyzed. RESULTS: Spontaneous production of innate immune biomarkers was significantly reduced in cord blood of infants exposed to malaria, with variation among PME groups, as compared to those from the non-exposed control group. However, following TLR7/8 stimulation, which showed higher induction of cytokines/chemokines/growth factors than TLRs 3 and 9, cord blood cells of infants with evidence of past placental malaria were hyper-responsive in comparison to those of infants not-exposed. In addition, certain biomarkers, which levels were significantly modified depending on the PME category, were independent predictors of either malaria risk (GM-CSF TLR7/8 crude) or protection (IL-12 TLR7/8 ratio and IP-10 TLR3 crude, IL-1RA TLR7/8 ratio) during the first year of life. CONCLUSIONS: These findings indicate that past placental malaria has a profound effect on fetal immune system and that the differential alterations of innate immune responses by PME categories might drive heterogeneity between individuals to clinical malaria susceptibility during the first year of life
    corecore