181 research outputs found

    A double epidemic model for the SARS propagation

    Get PDF
    BACKGROUND: An epidemic of a Severe Acute Respiratory Syndrome (SARS) caused by a new coronavirus has spread from the Guangdong province to the rest of China and to the world, with a puzzling contagion behavior. It is important both for predicting the future of the present outbreak and for implementing effective prophylactic measures, to identify the causes of this behavior. RESULTS: In this report, we show first that the standard Susceptible-Infected-Removed (SIR) model cannot account for the patterns observed in various regions where the disease spread. We develop a model involving two superimposed epidemics to study the recent spread of the SARS in Hong Kong and in the region. We explore the situation where these epidemics may be caused either by a virus and one or several mutants that changed its tropism, or by two unrelated viruses. This has important consequences for the future: the innocuous epidemic might still be there and generate, from time to time, variants that would have properties similar to those of SARS. CONCLUSION: We find that, in order to reconcile the existing data and the spread of the disease, it is convenient to suggest that a first milder outbreak protected against the SARS. Regions that had not seen the first epidemic, or that were affected simultaneously with the SARS suffered much more, with a very high percentage of persons affected. We also find regions where the data appear to be inconsistent, suggesting that they are incomplete or do not reflect an appropriate identification of SARS patients. Finally, we could, within the framework of the model, fix limits to the future development of the epidemic, allowing us to identify landmarks that may be useful to set up a monitoring system to follow the evolution of the epidemic. The model also suggests that there might exist a SARS precursor in a large reservoir, prompting for implementation of precautionary measures when the weather cools down

    One-year molecular survey of astrovirus infection in turkeys in Poland

    Get PDF
    The presence of turkey astrovirus (TAstV) was monitored in meat-type turkey flocks in Poland in 2008. Clinical samples (10 individual faecal swabs/flock) from 77 flocks aged 1-19Β weeks were collected from different regions of the country. RT-PCR experiments were performed for detection and molecular characterization of TAstV using four sets of primers within the RdRp gene (ORF1b). The prevalence of astrovirus was 34/77 (44.15%) in the flocks tested. TAstV type 2 was associated with 30 of 77 infections (38.9%), either alone or in mixed infections; TAstV type 1 was detected in 9 of 77 flocks (11.6%), either alone or in mixed infections; ANV was detected only in one flock (1.29%) by sequence analysis during this study. Phylogenetic analysis revealed genetic variability in the TAstV strains that were isolated. Some of Polish TAstV-2 strains were genetically related to the North American isolates; however, most of them formed a distinct subgroup of β€œEuropean” isolates, suggesting their separate origin or evolution. Additionally, due to the high variability of the TAstV sequences, the most suitable method for TAstV typing seems to be sequencing

    Calf health from birth to weaning. III. housing and management of calf pneumonia

    Get PDF
    Calfhood diseases have a major impact on the economic viability of cattle operations. A three part review series has been developed focusing on calf health from birth to weaning. In this paper, the last of the three part series, we review disease prevention and management with particular reference to pneumonia, focusing primarily on the pre-weaned calf. Pneumonia in recently weaned suckler calves is also considered, where the key risk factors are related to the time of weaning. Weaning of the suckler calf is often combined with additional stressors including a change in nutrition, environmental change, transport and painful husbandry procedures (castration, dehorning). The reduction of the cumulative effects of these multiple stressors around the time of weaning together with vaccination programmes (preconditioning) can reduce subsequent morbidity and mortality in the feedlot. In most studies, calves housed individually and calves housed outdoors with shelter, are associated with decreased risk of disease. Even though it poses greater management challenges, successful group housing of calves is possible. Special emphasis should be given to equal age groups and to keeping groups stable once they are formed. The management of pneumonia in calves is reliant on a sound understanding of aetiology, relevant risk factors, and of effective approaches to diagnosis and treatment. Early signs of pneumonia include increased respiratory rate and fever, followed by depression. The single most important factor determining the success of therapy in calves with pneumonia is early onset of treatment, and subsequent adequate duration of treatment. The efficacy and economical viability of vaccination against respiratory disease in calves remains unclear

    Calf health from birth to weaning. II. Management of diarrhoea in pre-weaned calves

    Get PDF
    Calfhood diseases have a major impact on the economic viability of cattle operations. The second of this three part review series considers the management of diarrhoeic diseases in pre-weaned calves. In neonatal calf diarrhoea, oral rehydration therapy is the single most important therapeutic measure to be carried out by the farmer and is usually successful if instigated immediately after diarrhoea has developed. Continued feeding of milk or milk replacer to diarrhoeic calves is important, to prevent malnourishment and weight loss in affected calves. Indiscriminative antibiotic treatment of uncomplicated diarrhoea is discouraged, whereas systemically ill calves can benefit from systemic antibiotic treatment for the prevention of septicaemia or concurrent diseases. Ancillary treatments and specific preventive measures are discussed. Eimeriosis has a high economic impact on the farming industries due to direct cost of treatment and calf losses, but especially due to decreased performance of clinically as well as sub-clinically affected animals. Emphasis lies on prophylactic or metaphylactic treatment, since the degree of damage to the intestinal mucosa once diarrhoea has developed, makes therapeutic intervention unrewarding

    Apnea of prematurity: from cause to treatment

    Get PDF
    Apnea of prematurity (AOP) is a common problem affecting premature infants, likely secondary to a β€œphysiologic” immaturity of respiratory control that may be exacerbated by neonatal disease. These include altered ventilatory responses to hypoxia, hypercapnia, and altered sleep states, while the roles of gastroesophageal reflux and anemia remain controversial. Standard clinical management of the obstructive subtype of AOP includes prone positioning and continuous positive or nasal intermittent positive pressure ventilation to prevent pharyngeal collapse and alveolar atelectasis, while methylxanthine therapy is a mainstay of treatment of central apnea by stimulating the central nervous system and respiratory muscle function. Other therapies, including kangaroo care, red blood cell transfusions, and CO2 inhalation, require further study. The physiology and pathophysiology behind AOP are discussed, including the laryngeal chemoreflex and sensitivity to inhibitory neurotransmitters, as are the mechanisms by which different therapies may work and the potential long-term neurodevelopmental consequences of AOP and its treatment

    Increased frequency of porcine epidemic diarrhea virus shedding and lesions in suckling pigs compared to nursery pigs and protective immunity in nursery pigs after homologous re-challenge

    Get PDF
    Porcine epidemic diarrhea virus (PEDV) causes enteric disease in pigs and spreads rapidly after entering naΓ―ve pig populations. The objectives were to (1) compare the disease course following inoculation with PEDV isolate US/Colorado/2013 in naΓ―ve 10Β day and 8Β week-old pigs, and (2) contrast the naΓ―ve response to homologous challenge in 8Β week-old pigs. Pigs were randomly assigned into group 1 (nΒ =Β 40, no PEDV exposure), group 2 (nΒ =Β 43, PEDV inoculation at 10Β days of age) and group 3 (nΒ =Β 48, PEDV inoculation at 8Β weeks of age). Thirty-three group 2 pigs received a homologous challenge at 8Β weeks of age. Following primary or secondary inoculation, 3–10 pigs were euthanized at days post-inoculation (dpi) 1, 2, 3, 7 or 14. Clinical signs were more pronounced in 10Β day-old pigs compared to 8Β week-old pigs at dpi 2 and 3, a higher number of 10Β day-old pigs shed PEDV RNA in feces compared to 8Β week-old pigs. Typical severe atrophic enteritis of PEDV infection was observed at dpi 3 in both age groups, and at dpi 4 and 14 fecal shedding patterns were also similar. While both age groups had seroconverted to PEDV by dpi 14, IgG levels were higher in 8Β week-old pigs. PEDV IgA antibodies were detected in feces of approximately 50% of the pigs at dpi 44. In homologous challenged pigs, no clinical signs or lesions were found, and PEDV fecal shedding was restricted to less than 10% of the pigs indicating the existence of homologous protection 44 days after initial PEDV exposure

    Coronavirus Gene 7 Counteracts Host Defenses and Modulates Virus Virulence

    Get PDF
    Transmissible gastroenteritis virus (TGEV) genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Ξ”7). Both the mutant and the parental (rTGEV-wt) viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Ξ”7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Ξ”7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2Ξ±) phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Ξ”7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c), a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2Ξ± dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Ξ”7 and rTGEV-wt viruses showed that rTGEV-Ξ”7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the acquisition of gene 7 by the TGEV genome most likely has provided a selective advantage to the virus

    A systematic review of physical activity and sedentary behaviour research in the oil-producing countries of the Arabian Peninsula

    Full text link
    • …
    corecore