2,159 research outputs found

    Asteroseismology of the GW Virginis stars SDSS J0349-0059 and VV 47

    Get PDF
    We present an asteroseismological study of SDSS J0349-0059 and VV 47 aimed mainly at deriving their total mass on the basis of state-of-the-art PG 1159 evolutionary models. We compute adiabatic nonradial gg-mode pulsation periods for PG 1159 evolutionary models with stellar masses ranging from 0.5150.515 to 0.741\ M_{\sun}, that take into account the complete evolution of the progenitor stars. We first estimate a mean period spacing for both SDSS J0349-0059 and VV 47. By comparing the observed period spacing with the asymptotic period spacing we obtain M_{\star}\sim 0.569\ M_{\sun} for SDSS J0349-0059 and M_{\star}\sim 0.523\ M_{\sun} for VV 47. If we compare the observed period spacing with the average of the computed period spacings we found M_{\star}\sim 0.535\ M_{\sun} for SDSS J0349-0059 and M_{\star}\sim 0.528 M_{\sun} for VV 47. Searching for the best period fit we found, in the case of SDSS J0349-0059, an asteroseismological model with $M_{\star}= 0.542\ M_{\sun}and and T_{\rm eff}= 91\, 255\ K.ForVV47,wecouldnotfindauniqueandunambiguousasteroseismologicalmodel.Finally,forSDSSJ03490059,wedeterminedtherotationperiodasbeingK. For VV 47, we could not find a unique and unambiguous asteroseismological model. Finally, for SDSS J0349-0059, we determined the rotation period as being P_{\rm rot}= 1/\Omega \sim 0.407$ days. The results presented in this work constitute a further step in the study of GW Vir stars through asteroseismology in the frame of fully evolutionary models of PG 1159 stars. In particular, once again it is shown the potential of asteroseismology to derive stellar masses of PG 1159 stars with an unprecedented precision.Comment: 13 pages, 16 figures, 6 tables. To be published in Astronomy and Astrophysic

    New evolutionary sequences for extremely low mass white dwarfs: Homogeneous mass and age determinations, and asteroseismic prospects

    Get PDF
    We provide a fine and homogeneous grid of evolutionary sequences for He-core white dwarfs with masses 0.15-0.45 Msun, including the mass range for ELM white dwarfs (<0.20Msun). The grid is appropriate for mass and age determination, and to study their pulsational properties. White dwarf sequences have been computed by performing full evolutionary calculations that consider the main energy sources and processes of chemical abundance changes during white dwarf evolution. Initial models for the evolving white dwarfs have been obtained by computing the non-conservative evolution of a binary system consisting of a Msun ZAMS star and a 1.4 Msun neutron star for various initial orbital periods. To derive cooling ages and masses for He-core white dwarf we perform a least square fitting of the M(Teff, g) and Age(Teff, g) relations provided by our sequences by using a scheme that takes into account the time spent by models in different regions of the Teff-g plane. This is useful when multiple solutions for cooling age and mass determinations are possible in the case of CNO-flashing sequences. We also explore the adiabatic pulsational properties of models near the critical mass for the development of CNO flashes (~0.2 Msun). This is motivated by the discovery of pulsating white dwarfs with stellar masses near this threshold value. We obtain reliable and homogeneous mass and cooling age determinations for 58 very low-mass white dwarfs, including 3 pulsating stars. Also, we find substantial differences in the period spacing distributions of g-modes for models with stellar masses ~ 0.2 Msun, which could be used as a seismic tool to distinguish stars that have undergone CNO flashes in their early cooling phase from those that have not. Finally, for an easy application of our results, we provide a reduced grid of values useful to obtain masses and ages of He-core white dwarf.Comment: 12 pages, 9 figures, to be published in Astronomy and Astrophysic

    White dwarf evolutionary sequences for low-metallicity progenitors: The impact of third dredge-up

    Get PDF
    We present new white dwarf evolutionary sequences for low-metallicity progenitors. White dwarf sequences have been derived from full evolutionary calculations that take into account the entire history of progenitor stars, including the thermally-pulsing and the post-asymptotic giant branch phases. We show that for progenitor metallicities in the range 0.00003--0.001, and in the absence of carbon enrichment due to the occurrence of a third dredge-up episode, the resulting H envelope of the low-mass white dwarfs is thick enough to make stable H burning the most important energy source even at low luminosities. This has a significant impact on white dwarf cooling times. This result is independent of the adopted mass-loss rate during the thermally-pulsing and post-AGB phases, and the planetary nebulae stage. We conclude that in the absence of third dredge-up episodes, a significant part of the evolution of low-mass white dwarfs resulting from low-metallicity progenitors is dominated by stable H burning. Our study opens the possibility of using the observed white dwarf luminosity function of low-metallicity globular clusters to constrain the efficiency of third dredge up episodes during the thermally-pulsing AGB phase of low-metallicity progenitors.Comment: To be published in Astronomy and Astrophysics. 12 pages, 11 figure

    Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    Get PDF
    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. By comparing the theoretical rate of change of period expected for this star with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment. Our upper limit for the neutrino magnetic dipole moment is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.Comment: 18 pages, 10 figures, 3 tables. Accepted for publication in Journal of Cosmology and Astroparticle Physic

    Rheumatology Patients' Knowledge About Clinical Research

    Get PDF

    A Lightweight Regression Method to Infer Psycholinguistic Properties for Brazilian Portuguese

    Full text link
    Psycholinguistic properties of words have been used in various approaches to Natural Language Processing tasks, such as text simplification and readability assessment. Most of these properties are subjective, involving costly and time-consuming surveys to be gathered. Recent approaches use the limited datasets of psycholinguistic properties to extend them automatically to large lexicons. However, some of the resources used by such approaches are not available to most languages. This study presents a method to infer psycholinguistic properties for Brazilian Portuguese (BP) using regressors built with a light set of features usually available for less resourced languages: word length, frequency lists, lexical databases composed of school dictionaries and word embedding models. The correlations between the properties inferred are close to those obtained by related works. The resulting resource contains 26,874 words in BP annotated with concreteness, age of acquisition, imageability and subjective frequency.Comment: Paper accepted for TSD201

    Dimensionality effects in the LDOS of ferromagnetic hosts probed via STM: spin-polarized quantum beats and spin filtering

    Full text link
    We theoretically investigate the local density of states (LDOS) probed by a STM tip of ferromagnetic metals hosting a single adatom and a subsurface impurity. We model the system via the two-impurity Anderson Hamiltonian. By using the equation of motion with the relevant Green functions, we derive analytical expressions for the LDOS of two host types: a surface and a quantum wire. The LDOS reveals Friedel-like oscillations and Fano interference as a function of the STM tip position. These oscillations strongly depend on the host dimension. Interestingly, we find that the spin-dependent Fermi wave numbers of the hosts give rise to spin-polarized quantum beats in the LDOS. While the LDOS for the metallic surface shows a damped beating pattern, it exhibits an opposite behavior in the quantum wire. Due to this absence of damping, the wire operates as a spatially resolved spin filter with a high efficiency.Comment: revised tex
    corecore