15,149 research outputs found
Gravity-Driven Acceleration of the Cosmic Expansion
It is shown here that a dynamical Planck mass can drive the scale factor of
the universe to accelerate. The negative pressure which drives the cosmic
acceleration is identified with the unusual kinetic energy density of the
Planck field. No potential nor cosmological constant is required. This suggests
a purely gravity driven, kinetic inflation. Although the possibility is not
ruled out, the burst of acceleration is often too weak to address the initial
condition problems of cosmology. To illustrate the kinetic acceleration, three
different cosmologies are presented. One such example, that of a bouncing
universe, demonstrates the additional feature of being nonsingular. The
acceleration is also considered in the conformally related Einstein frame in
which the Planck mass is constant.Comment: 23 pages, LaTex, figures available upon request, (revisions include
added references and comment on inflation) CITA-94-1
Stories of pre-war, war and exile: Bosnian refugee children in Sweden.
While standardized questionnaires produce counts of isolated events, a semi-structured interview derives a story, a complex narrative in time and place. Ninety Bosnian refugee children and adolescents (ages 1-20), resettled in Sweden, were assessed in a semi-structured clinical interview designed to identify and offer support to children at risk. A family-child account of traumatic exposure was analysed quantitatively and qualitatively. Type-stories or clusters of experience were identified for three distinct periods: prior to war, during war, and after war in exile. The extent of trauma-stress exposure during each of these periods proved unrelated. Pre-war experience presented as preponderantly good and safe. Differences in child exposure during war and exile could be understood in relation to identifiable socio-demographic factors; particularly ethnic background, social class, child age and family size. Further, the stories derived cast light on the equity of Swedish refugee reception, exposing both egalitarian and discriminatory tendencies
Solomonoff Induction Violates Nicod's Criterion
Nicod's criterion states that observing a black raven is evidence for the
hypothesis H that all ravens are black. We show that Solomonoff induction does
not satisfy Nicod's criterion: there are time steps in which observing black
ravens decreases the belief in H. Moreover, while observing any computable
infinite string compatible with H, the belief in H decreases infinitely often
when using the unnormalized Solomonoff prior, but only finitely often when
using the normalized Solomonoff prior. We argue that the fault is not with
Solomonoff induction; instead we should reject Nicod's criterion.Comment: ALT 201
Geochemistry, faunal composition and trophic structure in reducing sediments on the southwest South Georgia margin
Despite a number of studies in areas of focused methane seepage, the extent of transitional sediments of more diffuse methane seepage, and their influence upon biological communities is poorly understood. We investigated an area of reducing sediments with elevated levels of methane on the South Georgia margin around 250 m depth and report data from a series of geochemical and biological analyses. Here, the geochemical signatures were consistent with weak methane seepage and the role of sub-surface methane consumption was clearly very important, preventing gas emissions into bottom waters. As a result, the contribution of methane-derived carbon to the microbial and metazoan food webs was very limited, although sulfur isotopic signatures indicated a wider range of dietary contributions than was apparent from carbon isotope ratios. Macrofaunal assemblages had high dominance and were indicative of reducing sediments, with many taxa common to other similar environments and no seep-endemic fauna, indicating transitional assemblages. Also similar to other cold seep areas, there were samples of authigenic carbonate, but rather than occurring as pavements or sedimentary concretions, these carbonates were restricted to patches on the shells of Axinulus antarcticus (Bivalvia, Thyasiridae), which is suggestive of microbe–metazoan interactions
Scalar field fluctuations in Pre-Big-Bang Cosmologies
Jordan-Brans-Dicke theories with a linearized potential for the scalar field
are investigated in the framework of the stochastic approach. The fluctuations
of this field are examined and their backreaction on the classical background
is described. We compute the mode functions and analyze the time evolution of
the variance of the stochastic ensemble corresponding to the full quantum
scalar field in the pre-big-bang regime. We compute fluctuations of the term
discriminating between the two branches of solutions present in the theory. We
find, both analytically and upon direct integration of the stochastic equations
of motion, that the dispersion of these fluctuations grows to achieve the
magnitude of the term separating the two classical solutions. This means that
the ensembles representing classical solutions which belong to different
branches do overlap; this may provide a quantum mechanical realization at the
level of field theory to change among solutions belonging to different
branches.Comment: 26 pages, Latex, 6 ps figure
Anisotropic Inflation from Extra Dimensions
Vacuum multidimensional cosmological models with internal spaces being
compact -dimensional Lie group manifolds are considered. Products of
3-spheres and manifold (a novelty in cosmology) are studied. It turns
out that the dynamical evolution of the internal space drives an accelerated
expansion of the external world (power law inflation). This generic solution
(attractor in a phase space) is determined by the Lie group space without any
fine tuning or arbitrary inflaton potentials. Matter in the four dimensions
appears in the form of a number of scalar fields representing anisotropic scale
factors for the internal space. Along the attractor solution the volume of the
internal space grows logarithmically in time. This simple and natural model
should be completed by mechanisms terminating the inflationary evolution and
transforming the geometric scalar fields into ordinary particles.Comment: LaTeX, 11 pages, 5 figures available via fax on request to
[email protected], submitted to Phys. Lett.
Impairment of neutrophil oxidative burst in children with sickle cell disease is associated with heme oxygenase-1.
Sickle cell disease is a risk factor for invasive bacterial infections, and splenic dysfunction is believed to be the main underlying cause. We have previously shown that the liberation of heme in acute hemolysis can induce heme oxygenase-1 during granulopoiesis, impairing the ability of developing neutrophils to mount a bactericidal oxidative burst, and increasing susceptibility to bacterial infection. We hypothesized that this may also occur with the chronic hemolysis of sickle cell disease, potentially contributing to susceptibility to infections. We found that neutrophil oxidative burst activity was significantly lower in treatment-naïve children with sickle cell disease compared to age-, gender- and ethnicity-matched controls, whilst degranulation was similar. The defect in neutrophil oxidative burst was quantitatively related to both systemic heme oxygenase-1 activity (assessed by carboxyhemoglobin concentration) and neutrophil mobilization. A distinct population of heme oxygenase-1-expressing cells was present in the bone marrow of children with sickle cell disease, but not in healthy children, with a surface marker profile consistent with neutrophil progenitors (CD49d(Hi) CD24(Lo) CD15(Int) CD16(Int) CD11b(+/-)). Incubation of promyelocytic HL-60 cells with the heme oxygenase-1 substrate and inducer, hemin, demonstrated that heme oxygenase-1 induction during neutrophilic differentiation could reduce oxidative burst capacity. These findings indicate that impairment of neutrophil oxidative burst activity in sickle cell disease is associated with hemolysis and heme oxygenase-1 expression. Neutrophil dysfunction might contribute to risk of infection in sickle cell disease, and measurement of neutrophil oxidative burst might be used to identify patients at greatest risk of infection, who might benefit from enhanced prophylaxis
Subtidal macrozoobenthos communities from northern Chile during and post El Niño 1997–1998
Despite a large amount of climatic and oceanographic information dealing with the recurring climate phenomenon El Niño (EN) and its well known impact on diversity of marine benthic communities, most published data are rather descriptive and consequently our understanding of the underlying mechanisms and processes that drive community structure during EN are still very scarce. In this study, we address two questions on the effects of EN on macrozoobenthic communities: (1) how does EN affect species diversity of the communities in northern Chile? and (2) is EN a phenomenon that restarts community assembling processes by affecting species interactions in northern Chile? To answer these questions, we compared species diversity and co-occurrence patterns of soft-bottoms macrozoobenthos communities from the continental shelf off northern Chile during (March 1998) and after (September 1998) the strong EN event 1997–1998. The methods used varied from species diversity and species co-occurrence analyses to multivariate ordination methods.
Our results indicate that EN positively affects diversity of macrozoobenthos communities in the study area, increasing the species richness and diversity and decreasing the species dominance. EN represents a strong disturbance that affects species interactions that rule the species assembling processes in shallow-water, sea-bottom environments
Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea
The deep sea is Earth’s largest habitat but little is known about the nature of deep-sea parasitism. In contrast to a few characterized cases of bacterial and protistan parasites, the existence and biological significance of deep-sea parasitic fungi is yet to be understood. Here we report the discovery of a fungus-related parasitic microsporidium, Nematocenator marisprofundi n. gen. n. sp. that infects benthic nematodes at Pacific Ocean methane seeps on the Pacific Ocean floor. This infection is species-specific and has been temporally and spatially stable over two years of sampling, indicating an ecologically consistent host-parasite interaction. A high distribution of spores in the reproductive tracts of infected males and females and their absence from host nematodes’ intestines suggests a sexual transmission strategy in contrast to the fecal-oral transmission of most microsporidia. N. marisprofundi targets the host’s body wall muscles causing cell lysis, and in severe infection even muscle filament degradation. Phylogenetic analyses placed N. marisprofundi in a novel and basal clade not closely related to any described microsporidia clade, suggesting either that microsporidia-nematode parasitism occurred early in microsporidia evolution or that host specialization occurred late in an ancient deep-sea microsporidian lineage. Our findings reveal that methane seeps support complex ecosystems involving interkingdom interactions between bacteria, nematodes, and parasitic fungi and that microsporidia parasitism exists also in the deep sea biosphere
Oscillation of linear ordinary differential equations: on a theorem by A. Grigoriev
We give a simplified proof and an improvement of a recent theorem by A.
Grigoriev, placing an upper bound for the number of roots of linear
combinations of solutions to systems of linear equations with polynomial or
rational coefficients.Comment: 16 page
- …
