700 research outputs found

    Antibacterial effect of orange Monascus pigment against Staphylococcus aureus

    Get PDF
    The objective of this work was to research the antibacterial effects of orange pigment, which was separated from Monascus pigments, against Staphylococcus aureus. The increase of the diameter of inhibition zone treated with orange pigment indicated that orange pigment had remarkable antibacterial activities against S. aureus. Orange pigment (10 mg ml−1) had a strong destructive effect on the membrane and structure of S. aureus by the analysis of scanning electron microscopy as well as transmission electron microscopy. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) further demonstrated that the cell membrane was seriously damaged by orange pigment, which resulted in the leakage of protein from S. aureus cells. A significant decrease in the synthesis of DNA was also seen in S. aureus cells exposed to 10 mg ml−1 orange pigment. All in all, orange pigment showed excellent antibacterial effects against S. aureus

    Bethe Ansatz for the Weakly Asymmetric Simple Exclusion Process and phase transition in the current distribution

    Full text link
    The probability distribution of the current in the asymmetric simple exclusion process is expected to undergo a phase transition in the regime of weak asymmetry of the jumping rates. This transition was first predicted by Bodineau and Derrida using a linear stability analysis of the hydrodynamical limit of the process and further arguments have been given by Mallick and Prolhac. However it has been impossible so far to study what happens after the transition. The present paper presents an analysis of the large deviation function of the current on both sides of the transition from a Bethe ansatz approach of the weak asymmetry regime of the exclusion process.Comment: accepted to J.Stat.Phys, 1 figure, 1 reference, 2 paragraphs adde

    Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers

    Full text link

    Deep learning-based prediction of intra-cardiac blood flow in long-axis cine magnetic resonance imaging

    Get PDF
    Purpose: We aimed to design and evaluate a deep learning-based method to automatically predict the time-varying in-plane blood flow velocity within the cardiac cavities in long-axis cine MRI, validated against 4D flow. Methods: A convolutional neural network (CNN) was implemented, taking cine MRI as the input and the in-plane velocity derived from the 4D flow acquisition as the ground truth. The method was evaluated using velocity vector end-point error (EPE) and angle error. Additionally, the E/A ratio and diastolic function classification derived from the predicted velocities were compared to those derived from 4D flow. Results: For intra-cardiac pixels with a velocity > 5 cm/s, our method achieved an EPE of 8.65 cm/s and angle error of 41.27 degrees. For pixels with a velocity > 25 cm/s, the angle error significantly degraded to 19.26 degrees. Although the averaged blood flow velocity prediction was under-estimated by 26.69%, the high correlation (PCC = 0.95) of global time-varying velocity and the visual evaluation demonstrate a good agreement between our prediction and 4D flow data. The E/A ratio was derived with minimal bias, but with considerable mean absolute error of 0.39 and wide limits of agreement. The diastolic function classification showed a high accuracy of 86.9%. Conclusion: Using a deep learning-based algorithm, intra-cardiac blood flow velocities can be predicted from long-axis cine MRI with high correlation with 4D flow derived velocities. Visualization of the derived velocities provides adjunct functional information and may potentially be used to derive the E/A ratio from conventional CMR exams.Radiolog

    Measurements of Cabibbo Suppressed Hadronic Decay Fractions of Charmed D0 and D+ Mesons

    Full text link
    Using data collected with the BESII detector at e+e−e^{+}e^{-} storage ring Beijing Electron Positron Collider, the measurements of relative branching fractions for seven Cabibbo suppressed hadronic weak decays D0→K−K+D^0 \to K^- K^+, π+π−\pi^+ \pi^-, K−K+π+π−K^- K^+ \pi^+ \pi^- and π+π+π−π−\pi^+ \pi^+ \pi^- \pi^-, D+→K0ˉK+D^+ \to \bar{K^0} K^+, K−K+π+K^- K^+ \pi^+ and π−π+π+\pi^- \pi^+ \pi^+ are presented.Comment: 11 pages, 5 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    Insights into the function of silver as an oxidation catalyst by ab initio, atomistic thermodynamics

    Get PDF
    To help understand the high activity of silver as an oxidation catalyst, e.g., for the oxidation of ethylene to epoxide and the dehydrogenation of methanol to formaldehyde, the interaction and stability of oxygen species at the Ag(111) surface has been studied for a wide range of coverages. Through calculation of the free energy, as obtained from density-functional theory and taking into account the temperature and pressure via the oxygen chemical potential, we obtain the phase diagram of O/Ag(111). Our results reveal that a thin surface-oxide structure is most stable for the temperature and pressure range of ethylene epoxidation and we propose it (and possibly other similar structures) contains the species actuating the catalysis. For higher temperatures, low coverages of chemisorbed oxygen are most stable, which could also play a role in oxidation reactions. For temperatures greater than about 775 K there are no stable oxygen species, except for the possibility of O atoms adsorbed at under-coordinated surface sites Our calculations rule out thicker oxide-like structures, as well as bulk dissolved oxygen and molecular ozone-like species, as playing a role in the oxidation reactions.Comment: 15 pages including 9 figures, Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons

    Full text link
    The branching fractions for the inclusive Cabibbo-favored ~K*0 and Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with the BES-II detector at the BEPC collider. The branching fractions for the decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 -> \~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X) < 6.6%
    • 

    corecore