157 research outputs found

    The SPOrt Project: Cosmological and Astrophysical Goals

    Full text link
    We present the cosmological and astrophysical objectives of the SPOrt mission, which is scheduled for flying on the International Space Station (ISS) in the year 2002 with the purpose of measuring the diffuse sky polarized radiation in the microwave region. We discuss the problem of disentangling the cosmic background polarized signal from the Galactic foregrounds.Comment: 10 pages; 5 PS figures; requires aipproc2.cls, aipproc2.sty, epsfc.tex; to appear in Proc. of ``3K Cosmology'', Rome 5-10 Oct. 199

    A project for polarimetric observations in single dish with Medicina and Noto 32 m antennas

    Get PDF
    A project with multidisciplinary characteristics, aimed to implement the possibility of polarimetric measurements in single dish at the VLBI stations of Medicina and Noto, is presented. The project will open a new window on many astrophysical items that may be approached using the already existing instrumentation and facilities of the two Italian radioastronomical stations. We report here some scientific backgrounds, together with some technical evaluations, on which the feasibility of the project is based

    Radio monitoring of a sample of X- and gamma-ray loud blazars

    Full text link
    In this paper we present the results of a 4-year (1996 - 1999) radio flux density monitoring program for a sample of X- and γ\gamma-ray loud blazars. Our program started in January 1996 and was carried out on monthly basis at the frequencies of 5 GHz and 8.4 GHz with the 32-m antennas located in Medicina (Bologna, Italy) and Noto (Siracusa, Italy). 22 GHz data collected in Medicina from January 1996 to June 1997 will also be presented. The sample of selected sources comprises most radio loud blazars with δ≥−10∘\delta \ge -10^{\circ} characterised by emission in the X- and γ\gamma-ray regimes, and target sources for the BeppoSAX X-ray mission. All sources in the sample, except J1653+397 (MKN 501), are variable during the four years of our monitoring program. We classified the type of variability in each source by means of a structure function analysis. We also computed thα58.4\alpha_{5}^{8.4} for all epochs with nearly simultaneous observations ate spectral index and found that α58.4\alpha_{5}^{8.4} starts flattening at the very beginning o f a radio flare, or flux density increase.Comment: 12 pages, 3 tables and 1 figure, in press on A&

    Autologous Microfragmented Adipose Tissue Reduces the Catabolic and Fibrosis Response in an in Vitro Model of Tendon Cell Inflammation

    Get PDF
    Background. Mesenchymal stem cells (MSCs) emerged as a promising therapy for tendon pathologies. Microfragmented adipose tissue (\u3bcFAT) represents a convenient autologous product for the application of MSC-based therapies in the clinical setting. In the present study, the ability of \u3bcFAT to counteract inflammatory processes induced by IL-1\u3b2 on human tendon cells (TCs) was evaluated. Methods. Cell viability and proliferation were evaluated after 48 hours of transwell coculture of TCs and autologous \u3bcFAT in the presence or absence of IL-1\u3b2. Gene expression of scleraxis, collagen type I and type III, metalloproteinases-1 and -3, and cyclooxygenase-2 was evaluated by real-time RT-PCR. The content of VEGF, IL-1Ra, TNF\u3b1, and IL-6 was evaluated by ELISA. Results. IL-1\u3b2-treated TCs showed augmented collagen type III, metalloproteases, and cyclooxygenase-2 expression. \u3bcFAT was able to reduce the expression of collagen type III and metalloproteases-1 in a significant manner, and at the same time, it enhanced the production of VEGF, IL-1Ra, and IL-6. Conclusions. In this in vitro model of tendon cell inflammation, the paracrine action of \u3bcFAT, exerted by anti-inflammatory molecules and growth factors, was able to inhibit the expression of fibrosis and catabolic markers. Then, these results suggest that the application of \u3bcFAT may represent an effective conservative or adjuvant therapy for the treatment of tendon disorders

    High Levels of Circulating Type II Collagen Degradation Marker (CTx-II) Are Associated with Specific VDR Polymorphisms in Patients with Adult Vertebral Osteochondrosis

    Get PDF
    Both vitamin D and collagen have roles in osteocartilaginous homeostasis. We evaluated the association between the circulating 25-hydroxyvitamin D (25(OH)D) type I and II collagen degradation products (CTx-I, and CTx-II), and four vitamin D receptor gene (VDR) polymorphisms, in Italian males affected by low back pain (LBP) due to herniation/discopathy and/or vertebral osteochondrosis. FokI, BsmI, ApaI, and TaqI VDR-polymorphisms were detected through PCR-restriction fragment length polymorphism (RFLP), and circulating 25(OH)D, CTx-I and CTx-II were measured by immunoassays in 79 patients (of which 26 had osteochondrosis) and 79 age-, sex- and body mass index (BMI)-matched healthy controls. Among all 158 subjects, carriers of FF and Ff genotypes showed lower 25(OH)D than ff, which suggested a higher depletion of vitamin D in F allele carriers. Higher CTx-I concentrations were observed in TT versus Tt among controls, and Tt versus tt among LBP cases, which suggested a higher bone-cartilaginous catabolism in subjects bearing the T allele. Higher CTx-II concentrations were observed in patients with osteochondrosis bearing FF, bb, TT, or Aa genotypes in comparison with hernia/discopathy patients and healthy controls. Vertebral osteochondrosis shows peculiar genotypic and biochemical features related to vitamin D and the osteocartilaginous metabolism. Vitamin D has roles in the pathophysiology of osteochondrosis

    Mirna reference genes in extracellular vesicles released from amniotic membrane-derived mesenchymal stromal cells

    Get PDF
    Human amniotic membrane and amniotic membrane-derived mesenchymal stromal cells (hAMSCs) have produced promising results in regenerative medicine, especially for the treatment of inflammatory-based diseases and for different injuries including those in the orthopedic field such as tendon disorders. hAMSCs have been proposed to exert their anti-inflammatory and healing potential via secreted factors, both free and conveyed within extracellular vesicles (EVs). In particular, EV miRNAs are considered privileged players due to their impact on target cells and tissues, and their future use as therapeutic molecules is being intensely investigated. In this view, EV-miRNA quantification in either research or future clinical products has emerged as a crucial paradigm, although, to date, largely unsolved due to lack of reliable reference genes (RGs). In this study, a panel of thirteen putative miRNA RGs (let-7a-5p, miR-16-5p, miR-22-5p, miR-23a-3p, miR-26a-5p, miR-29a-5p, miR-101-3p, miR-103a-3p, miR-221-3p, miR-423-5p, miR-425-5p, miR-660-5p and U6 snRNA) that were identified in different EV types was assessed in hAMSC-EVs. A validated experimental pipeline was followed, sifting the output of four largely accepted algorithms for RG prediction (geNorm, NormFinder, BestKeeper and \u394Ct method). Out of nine RGs constitutively expressed across all EV isolates, miR-101-3p and miR-22-5p resulted in the most stable RGs, whereas miR-423-5p and U6 snRNA performed poorly. miR-22-5p was also previously reported to be a reliable RG in adipose-derived MSC-EVs, suggesting its suitability across samples isolated from different MSC types. Further, to shed light on the impact of incorrect RG choice, the level of five tendon-related miRNAs (miR-29a-3p, miR-135a-5p, miR-146a-5p, miR-337-3p, let-7d-5p) was compared among hAMSC-EVs isolates. The use of miR-423-5p and U6 snRNA did not allow a correct quantification of miRNA incorporation in EVs, leading to less accurate fingerprinting and, if used for potency prediction, misleading indication of the most appropriate clinical batch. These results emphasize the crucial importance of RG choice for EV-miRNAs in hAMSCs studies and contribute to the identification of reliable RGs such as miR-101-3p and miR-22-5p to be validated in other MSC-EVs related fields

    Low energy high angular resolution neutral atom detection by means of micro-shuttering techniques: the BepiColombo SERENA/ELENA sensor

    Full text link
    The neutral sensor ELENA (Emitted Low-Energy Neutral Atoms) for the ESA cornerstone BepiColombo mission to Mercury (in the SERENA instrument package) is a new kind of low energetic neutral atoms instrument, mostly devoted to sputtering emission from planetary surfaces, from E ~20 eV up to E~5 keV, within 1-D (2x76 deg). ELENA is a Time-of-Flight (TOF) system, based on oscillating shutter (operated at frequencies up to a 100 kHz) and mechanical gratings: the incoming neutral particles directly impinge upon the entrance with a definite timing (START) and arrive to a STOP detector after a flight path. After a brief dissertation on the achievable scientific objectives, this paper describes the instrument, with the new design techniques approached for the neutral particles identification and the nano-techniques used for designing and manufacturing the nano-structure shuttering core of the ELENA sensor. The expected count-rates, based on the Hermean environment features, are shortly presented and discussed. Such design technologies could be fruitfully exported to different applications for planetary exploration.Comment: 11 page

    The Sport Project: an Experimental Overview

    Get PDF
    The Sky Polarization Observatory (SPOrt) is presented as a project aimed to measure the diffuse sky polarized emission, from the International Space Station, in the frequency range 20-90 GHz with 7 degrees of HPBW. The SPOrt experimental configuration is described with emphasis on the aspects that make SPOrt the first European scientific payload operating at microwave wavelengths

    The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory

    Get PDF
    The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submillimetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16x25 pixels, each, and two filled silicon bolometer arrays with 16x32 and 32x64 pixels, respectively, to perform integral-field spectroscopy and imaging photometry in the 60-210\mu\ m wavelength regime. In photometry mode, it simultaneously images two bands, 60-85\mu\ m or 85-125\mu\m and 125-210\mu\ m, over a field of view of ~1.75'x3.5', with close to Nyquist beam sampling in each band. In spectroscopy mode, it images a field of 47"x47", resolved into 5x5 pixels, with an instantaneous spectral coverage of ~1500km/s and a spectral resolution of ~175km/s. We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the Performance Verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions
    • …
    corecore