2,210 research outputs found

    Methodology for urban rail and construction technology research and development planning

    Get PDF
    A series of transit system visits, organized by the American Public Transit Association (APTA), was conducted in which the system operators identified the most pressing development needs. These varied by property and were reformulated into a series of potential projects. To assist in the evaluation, a data base useful for estimating the present capital and operating costs of various transit system elements was generated from published data. An evaluation model was developed which considered the rate of deployment of the research and development project, potential benefits, development time and cost. An outline of an evaluation methodology that considered benefits other than capital and operating cost savings was also presented. During the course of the study, five candidate projects were selected for detailed investigation; (1) air comfort systems; (2) solid state auxiliary power conditioners; (3) door systems; (4) escalators; and (5) fare collection systems. Application of the evaluation model to these five examples showed the usefulness of modeling deployment rates and indicated a need to increase the scope of the model to quantitatively consider reliability impacts

    The mechanical response of semiflexible networks to localized perturbations

    Full text link
    Previous research on semiflexible polymers including cytoskeletal networks in cells has suggested the existence of distinct regimes of elastic response, in which the strain field is either uniform (affine) or non-uniform (non-affine) under external stress. Associated with these regimes, it has been further suggested that a new fundamental length scale emerges, which characterizes the scale for the crossover from non-affine to affine deformations. Here, we extend these studies by probing the response to localized forces and force dipoles. We show that the previously identified nonaffinity length [D.A. Head et al. PRE 68, 061907 (2003).] controls the mesoscopic response to point forces and the crossover to continuum elastic behavior at large distances.Comment: 16 pages, 18 figures; substantial changes to text and figures to clarify the crossover to continuum elasticity and the role of finite-size effect

    Word Embeddings for Entity-annotated Texts

    Full text link
    Learned vector representations of words are useful tools for many information retrieval and natural language processing tasks due to their ability to capture lexical semantics. However, while many such tasks involve or even rely on named entities as central components, popular word embedding models have so far failed to include entities as first-class citizens. While it seems intuitive that annotating named entities in the training corpus should result in more intelligent word features for downstream tasks, performance issues arise when popular embedding approaches are naively applied to entity annotated corpora. Not only are the resulting entity embeddings less useful than expected, but one also finds that the performance of the non-entity word embeddings degrades in comparison to those trained on the raw, unannotated corpus. In this paper, we investigate approaches to jointly train word and entity embeddings on a large corpus with automatically annotated and linked entities. We discuss two distinct approaches to the generation of such embeddings, namely the training of state-of-the-art embeddings on raw-text and annotated versions of the corpus, as well as node embeddings of a co-occurrence graph representation of the annotated corpus. We compare the performance of annotated embeddings and classical word embeddings on a variety of word similarity, analogy, and clustering evaluation tasks, and investigate their performance in entity-specific tasks. Our findings show that it takes more than training popular word embedding models on an annotated corpus to create entity embeddings with acceptable performance on common test cases. Based on these results, we discuss how and when node embeddings of the co-occurrence graph representation of the text can restore the performance.Comment: This paper is accepted in 41st European Conference on Information Retrieva

    Indeterminacy of Spatiotemporal Cardiac Alternans

    Full text link
    Cardiac alternans, a beat-to-beat alternation in action potential duration (at the cellular level) or in ECG morphology (at the whole heart level), is a marker of ventricular fibrillation, a fatal heart rhythm that kills hundreds of thousands of people in the US each year. Investigating cardiac alternans may lead to a better understanding of the mechanisms of cardiac arrhythmias and eventually better algorithms for the prediction and prevention of such dreadful diseases. In paced cardiac tissue, alternans develops under increasingly shorter pacing period. Existing experimental and theoretical studies adopt the assumption that alternans in homogeneous cardiac tissue is exclusively determined by the pacing period. In contrast, we find that, when calcium-driven alternans develops in cardiac fibers, it may take different spatiotemporal patterns depending on the pacing history. Because there coexist multiple alternans solutions for a given pacing period, the alternans pattern on a fiber becomes unpredictable. Using numerical simulation and theoretical analysis, we show that the coexistence of multiple alternans patterns is induced by the interaction between electrotonic coupling and an instability in calcium cycling.Comment: 20 pages, 10 figures, to be published in Phys. Rev.

    The organization of the transcriptional network in specific neuronal classes

    Get PDF
    Genome-wide expression profiling has aided the understanding of the molecular basis of neuronal diversity, but achieving broad functional insight remains a considerable challenge. Here, we perform the first systems-level analysis of microarray data from single neuronal populations using weighted gene co-expression network analysis to examine how neuronal transcriptome organization relates to neuronal function and diversity. We systematically validate network predictions using published proteomic and genomic data. Several network modules of co-expressed genes correspond to interneuron development programs, in which the hub genes are known to be critical for interneuron specification. Other co-expression modules relate to fundamental cellular functions, such as energy production, firing rate, trafficking, and synapses, suggesting that fundamental aspects of neuronal diversity are produced by quantitative variation in basic metabolic processes. We identify two transcriptionally distinct mitochondrial modules and demonstrate that one corresponds to mitochondria enriched in neuronal processes and synapses, whereas the other represents a population restricted to the soma. Finally, we show that galectin-1 is a new interneuron marker, and we validate network predictions in vivo using Rgs4 and Dlx1/2 knockout mice. These analyses provide a basis for understanding how specific aspects of neuronal phenotypic diversity are organized at the transcriptional level

    Measuring the Quantum State of a Large Angular Momentum

    Get PDF
    We demonstrate a general method to measure the quantum state of an angular momentum of arbitrary magnitude. The (2F+1) x (2F+1) density matrix is completely determined from a set of Stern-Gerlach measurements with (4F+1) different orientations of the quantization axis. We implement the protocol for laser cooled Cesium atoms in the 6S_{1/2}(F=4) hyperfine ground state and apply it to a variety of test states prepared by optical pumping and Larmor precession. A comparison of input and measured states shows typical reconstruction fidelities of about 0.95.Comment: 4 pages, 6 figures, submitted to PR

    Outbursts on normal stars. FH Leo misclassified as a novalike variable

    Full text link
    We present high resolution spectroscopy of the common proper motion system FH Leo (components HD 96273 and BD+07 2411B), which has been classified as a novalike variable due to an outburst observed by Hipparcos, and we present and review the available photometry. We show from our spectra that neither star can possibly be a cataclysmic variable, instead they are perfectly normal late-F and early-G stars. We measured their radial velocities and derived the atmospheric fundamental parameters, abundances of several elements including Fe, Ni, Cr, Co, V, Sc, Ti, Ca and Mg, and we derive the age of the system. From our analysis we conclude that the stars do indeed constitute a physical binary. However, the observed outburst cannot be readily explained. We examine several explanations, including pollution with scattered light from Jupiter, binarity, microlensing, background supernovae, interaction with unseen companions and planetary engulfment. While no explanation is fully satisfactory, the scattered light and star-planet interaction scenarios emerge as the least unlikely ones, and we give suggestions for further study.Comment: 8 pages, 7 figures. Accepted for publication in A&

    Images and nonlocal vortex pinning in thin superfluid films

    Full text link
    For thin films of superfluid adsorbed on a disordered substrate, we derive the equation of motion for a vortex in the presence of a random potential within a mean field (Hartree) description of the condensate. The compressible nature of the condensate leads to an effective pinning potential experienced by the vortex which is nonlocal, with a long range tail that smoothes out the random potential coupling the condensate to the substrate. We interpret this nonlocality in terms of images, and relate the effective potential governing the dynamics to the pinning energy arising from the expectation value of the Hamiltonian with respect to the vortex wavefunction.Comment: 19 pages, revtex, to appear Phys. Rev.
    corecore