10,232 research outputs found
On the physical origin of the second solar spectrum of the Sc II line at 4247 A
The peculiar three-peak structure of the linear polarization profile shown in
the second solar spectrum by the Ba II line at 4554 A has been interpreted as
the result of the different contributions coming from the barium isotopes with
and without hyperfine structure (HFS). In the same spectrum, a triple peak
polarization signal is also observed in the Sc II line at 4247 A. Scandium has
a single stable isotope (^{45}Sc), which shows HFS due to a nuclear spin I=7/2.
We investigate the possibility of interpreting the linear polarization profile
shown in the second solar spectrum by this Sc II line in terms of HFS. A
two-level model atom with HFS is assumed. Adopting an optically thin slab
model, the role of atomic polarization and of HFS is investigated, avoiding the
complications caused by radiative transfer effects. The slab is assumed to be
illuminated from below by the photospheric continuum, and the polarization of
the radiation scattered at 90 degrees is investigated. The three-peak structure
of the scattering polarization profile observed in this Sc II line cannot be
fully explained in terms of HFS. Given the similarities between the Sc II line
at 4247 A and the Ba II line at 4554 A, it is not clear why, within the same
modeling assumptions, only the three-peak Q/I profile of the barium line can be
fully interpreted in terms of HFS. The failure to interpret this Sc II
polarization signal raises important questions, whose resolution might lead to
significant improvements in our understanding of the second solar spectrum. In
particular, if the three-peak structure of the Sc II signal is actually
produced by a physical mechanism neglected within the approach considered here,
it will be extremely interesting not only to identify this mechanism, but also
to understand why it seems to be less important in the case of the barium line.Comment: 8 pages, 8 figures, and 1 table. Accepted for publication in
Astronomy and Astrophysic
Isotropic inelastic and superelastic collisional rates in a multiterm atom
The spectral line polarization of the radiation emerging from a magnetized
astrophysical plasma depends on the state of the atoms within the medium, whose
determination requires considering the interactions between the atoms and the
magnetic field, between the atoms and photons (radiative transitions), and
between the atoms and other material particles (collisional transitions). In
applications within the framework of the multiterm model atom (which accounts
for quantum interference between magnetic sublevels pertaining either to the
same J-level or to different J-levels within the same term) collisional
processes are generally neglected when solving the master equation for the
atomic density matrix. This is partly due to the lack of experimental data
and/or of approximate theoretical expressions for calculating the collisional
transfer and relaxation rates (in particular the rates for interference between
sublevels pertaining to different J-levels, and the depolarizing rates due to
elastic collisions). In this paper we formally define and investigate the
transfer and relaxation rates due to isotropic inelastic and superelastic
collisions that enter the statistical equilibrium equations of a multiterm
atom. Under the hypothesis that the atom-collider interaction can be described
by a dipolar operator, we provide expressions that relate the collisional rates
for interference between different J-levels to the usual collisional rates for
J-level populations. Finally, we apply the general equations to the case of a
two-term atom with unpolarized lower term, illustrating the impact of inelastic
and superelastic collisions on scattering polarization through radiative
transfer calculations in a slab of stellar atmospheric plasma anisotropically
illuminated by the photospheric radiation field.Comment: Accepted for publication in Astronomy & Astrophysic
Theoretical formulation of Doppler redistribution in scattering polarization within the framework of the velocity-space density matrix formalism
Within the framework of the density matrix theory for the generation and
transfer of polarized radiation, velocity density matrix correlations represent
an important physical aspect that, however, is often neglected in practical
applications by adopting the simplifying approximation of complete
redistribution on velocity. In this paper, we present an application of the
Non-LTE problem for polarized radiation taking such correlations into account
through the velocity-space density matrix formalism. We consider a two-level
atom with infinitely sharp upper and lower levels, and we derive the
corresponding statistical equilibrium equations neglecting the contribution of
velocity-changing collisions. Coupling such equations with the radiative
transfer equations for polarized radiation, we derive a set of coupled
equations for the velocity-dependent source function. This set of equations is
then particularized to the case of a plane-parallel atmosphere. The equations
presented in this paper provide a complete and solid description of the physics
of pure Doppler redistribution, a phenomenon generally described within the
framework of the redistribution matrix formalism. The redistribution matrix
corresponding to this problem (generally referred to as R_I) is derived
starting from the statistical equilibrium equations for the velocity-space
density matrix and from the radiative transfer equations for polarized
radiation, thus showing the equivalence of the two approaches.Comment: Accepted for publication in Astronomy & Astrophysic
Assessing the ecological soundness of organic and conventional agriculture by means of life cycle assessment (LCA) - a case study of leek production
Purpose – Sustainable agriculture implies the ability of agro-ecosystems to remain productive in the long-term. It is not easy to point out unambiguously whether or not current production systems meet this sustainability demand. A priori thinking would suggest that organic crops are environmentally favourable, but may ignore the effect of reduced productivity, which shifts the potential impact to other parts of the food provision system. The purpose of this paper is to assess the ecological sustainability of conventional and organic leek production by means of life cycle assessment (LCA).
Design/methodology/approach – A cradle-to-farm gate LCA is applied, based on real farm data from two research centres. For a consistent comparison, two functional units (FU) were defined: 1ha and 1?kg of leek production.
Findings – Assessed on an area basis, organic farming shows a more favourable environmental profile. These overall benefits are strongly reduced when the lower yields are taken into account. Related to organic farming it is therefore important that solutions are found to substantially increase the yields without increasing the environmental burden. Related to conventional farming, important potential for environmental improvements are in optimising the farm nutrient flows, reducing pesticide use and increasing its self-supporting capacity.
Research limitations/implications – The research is a cradle-to-farm gate LCA, future research can be expanded to comprise all phases from cradle-to-grave to get an idea of the total sustainability of our present food consumption patterns. The research is also limited to the case of leek production. Future research can apply the methodology to other crops.
Originality/value – To date, there is still lack of clear evidence of the added value of organic farming compared to conventional farming on environmental basis. Few studies have compared organic and conventional food production by means of LCA. This paper addresses these issues
On the accuracy of the ALI method for solving the radiative transfer equation
We solve the integral equation describing the propagation of light in an
isothermal plane-parallel atmosphere of optical thickness , adopting a
uniform thermalization parameter . The solution given by the ALI
method, widely used in the field of stellar atmospheres modelling, is compared
to the exact solution. Graphs are given that illustrate the accuracy of the ALI
solution as a function of the parameters , and optical depth
variable .Comment: 7 pages, 11 figures, A&A, accepted 30 July 2003, minor correction
Suggesting Cooking Recipes Through Simulation and Bayesian Optimization
Cooking typically involves a plethora of decisions about ingredients and
tools that need to be chosen in order to write a good cooking recipe. Cooking
can be modelled in an optimization framework, as it involves a search space of
ingredients, kitchen tools, cooking times or temperatures. If we model as an
objective function the quality of the recipe, several problems arise. No
analytical expression can model all the recipes, so no gradients are available.
The objective function is subjective, in other words, it contains noise.
Moreover, evaluations are expensive both in time and human resources. Bayesian
Optimization (BO) emerges as an ideal methodology to tackle problems with these
characteristics. In this paper, we propose a methodology to suggest recipe
recommendations based on a Machine Learning (ML) model that fits real and
simulated data and BO. We provide empirical evidence with two experiments that
support the adequacy of the methodology
- …