362 research outputs found

    Communicating Mental Illness in the Black American Community

    Get PDF
    Human-human interactions are of central relevance for the success in professional and occupational environments, which also substantially influence quality of life. This is especially true in the case of individuals with high-functioning autism (HFA), who experience deficits in social cognition that often lead to social exclusion and unemployment. Despite good education and high motivation, individuals with HFA do not reach employment rates that are substantially higher than 50 %. This is an alarmingly high rate of unemployment considering that the United Nations have recently emphasized the inclusion of handicapped persons as a mandatory human right. To date, the specific needs of autistic persons with respect to their working environment are largely unexplored. It remains moreover an open question how support systems and activities, including newly developed communication devices for professional environments of individuals with HFA, should look like. The German health and social care systems are not adequately prepared for the proper support of this population. This leads us to suggest that supported employment programs should be developed for adults with HFA that specifically address their needs and requirements. Such programs should comprise (1) the adequate assessment of HFA, including a neuropsychological profile and an individual matching of persons' preferences with requirements of the working place, (2) on-the-job coaching activities that include systematic communication and interaction training, and (3) instruction of non-autistic peers, including colleagues and supervisors, about weaknesses and strengths of HFA

    Why we interact : on the functional role of the striatum in the subjective experience of social interaction

    Get PDF
    Acknowledgments We thank Neil Macrae and Axel Cleeremans for comments on earlier versions of this manuscript. Furthermore, we are grateful to Dorothé Krug and Barbara Elghahwagi for their assistance in data acquisition. This study was supported by a grant of the Köln Fortune Program of the Medical Faculty at the University of Cologne to L.S. and by a grant “Other Minds” of the German Ministry of Research and Education to K.V.Peer reviewedPreprin

    The Power Spectrum of Galaxies in the Nearby Universe

    Get PDF
    We compute the power spectrum of galaxy density fluctuations in a recently completed redshift survey of optically-selected galaxies in the southern hemisphere (SSRS2). The amplitude and shape of the SSRS2 power spectrum are consistent with results of the Center for Astrophysics redshift survey of the northern hemisphere (CfA2), including the abrupt change of slope on a scale of 30-50Mpc/h; these results are reproducible for independent volumes of space and variations are consistent with the errors estimated from mock surveys. Taken together, the SSRS2 and CfA2 form a complete sample of 14,383 galaxies which covers one-third of the sky. The power spectrum of this larger sample continues to rise on scales up to ~ 200Mpc/h, with weak evidence for flattening on the largest scales. The SSRS2+CfA2 power spectrum and the power spectrum constraints implied by COBE are well-matched by an Omega*h ~ 0.2, Omega+lambda_0=1 CDM model with minimal biasing of optically-selected galaxies.Comment: Accepted for publication in The Astrophysical Journal Letters, Sept. 23, 1994. 10 pages uuencoded compressed postscript, including two figures. JHU-9410200

    Correlations in the Far Infrared Background

    Full text link
    We compute the expected angular power spectrum of the cosmic Far Infrared Background (FIRB). We find that the signal due to source correlations dominates the shot--noise for \ell \la 1000 and results in anisotropies with rms amplitudes ((+1)C/2π)(\sqrt{\ell(\ell+1)C_\ell/2\pi}) between 5% and 10% of the mean for l \ga 150. The angular power spectrum depends on several unknown quantities, such as the UV flux density evolution, optical properties of the dust, biasing of the sources of the FIRB, and cosmological parameters. However, when we require our models to reproduce the observed DC level of the FIRB, we find that the anisotropy is at least a few percent in all cases. This anisotropy is detectable with proposed instruments, and its measurement will provide strong constraints on models of galaxy evolution and large-scale structure at redshifts up to at least z5z \sim5.Comment: 7 pages, 4 figures included, uses emulateapj.sty. More models explored than in original version. Accepted for publication in Ap

    Crystal structure of the Anabaena sensory rhodopsin transducer.

    Get PDF
    We present crystal structures of the Anabaena sensory rhodopsin transducer (ASRT), a soluble cytoplasmic protein that interacts with the first structurally characterized eubacterial retinylidene photoreceptor Anabaena sensory rhodopsin (ASR). Four crystal structures of ASRT from three different spacegroups were obtained, in all of which ASRT is present as a planar (C4) tetramer, consistent with our characterization of ASRT as a tetramer in solution. The ASRT tetramer is tightly packed, with large interfaces where the well-structured beta-sandwich portion of the monomers provides the bulk of the tetramer-forming interactions, and forms a flat, stable surface on one side of the tetramer (the beta-face). Only one of our four different ASRT crystals reveals a C-terminal alpha-helix in the otherwise all-beta protein, together with a large loop from each monomer on the opposite face of the tetramer (the alpha-face), which is flexible and largely disordered in the other three crystal forms. Gel-filtration chromatography demonstrated that ASRT forms stable tetramers in solution and isothermal microcalorimetry showed that the ASRT tetramer binds to ASR with a stoichiometry of one ASRT tetramer per one ASR photoreceptor with a K(d) of 8 microM in the highest affinity measurements. Possible mechanisms for the interaction of this transducer tetramer with the ASR photoreceptor via its flexible alpha-face to mediate transduction of the light signal are discussed

    Distinct neural correlates of social and object reward seeking motivation

    Get PDF
    open access articleThe “Choose‐a‐Movie‐CAM” is an established task to quantify the motivation for seeking social rewards. It allows participants to directly assess both the stimulus value and the effort required to obtain it. In the present study, we aimed to identify the neural mechanisms of such cost‐benefit decision‐making. To this end, functional Magnetic Resonance Imaging data were collected from 24 typical adults while they completed the CAM task. We partly replicated the results from our previous behavioural studies showing that typical adults prefer social over object stimuli and low effort over higher effort stimuli but found no interaction between the two. Results from neuroimaging data suggest that there are distinct neural correlates for social and object preferences. The precuneus and medial orbitofrontal cortex, two key areas involved in social processing are engaged when participants make a social choice. Areas of the ventral and dorsal stream pathways associated with object recognition are engaged when making an object choice. These activations can be seen during the decision phase even before the rewards have been consumed, indicating a transfer the hedonic properties of social stimuli to its cues. We also found that the left insula and bilateral clusters in the inferior occipital gyrus and the inferior parietal lobule were recruited for increasing effort investment. We discuss limitations and implications of this study which reveals the distinct neural correlates for social and object rewards, using a robust behavioural measure of social motivation

    Adults with autism spectrum condition have atypical perception of ambiguous figures when bottom-up and top-down interactions are incongruous.

    Get PDF
    We examined the perception of an ambiguous squares stimulus evoking bistable perception in a sample of 31 individuals with autistic spectrum condition and 22 matched typical adults. The perception of the ambiguous figure was manipulated by adaptation to unambiguous figures and/or by placing the ambiguous figure into a context of unambiguous figures. This resulted in four conditions testing the independent and combined (congruent and incongruent) manipulations of adaptation (bottom-up) and spatial context (top-down) effects. The strength of perception, as measured by perception of the first reported orientation of the ambiguous stimulus, was affected comparably between groups. Nevertheless, the strength of perception, as measured by perceptual durations, was affected differently between groups: the perceptual effect was strongest for the autistic spectrum condition group when combined bottom-up and top-down conditions were congruent. In contrast, the strength of the perceptual effect in response to the same condition in the typical adults group was comparable to the adaptation, but stronger than both the context and the incongruent combined bottom-up and top-down conditions. Furthermore, the context condition was stronger than the incongruent combined bottom-up and top-down conditions for the typical adults group. Thus, our findings support the view of stimulus-specific top-down modulation in autistic spectrum condition

    Differentiating dark energy and modified gravity with galaxy redshift surveys

    Full text link
    The observed cosmic acceleration today could be due to an unknown energy component (dark energy), or a modification to general relativity (modified gravity). If dark energy models and modified gravity models are required to predict the same cosmic expansion history H(z), they will predict different growth rate for cosmic large scale structure, f_g(z)=d\ln \delta/d\ln a (\delta=(\rho_m-\bar{\rho_m})/\bar{\rho_m}), a is the cosmic scale factor). If gravity is not modified, the measured H(z) leads to a unique prediction for f_g(z), f_g^H(z). Comparing f_g^H(z) with the measured f_g(z) provides a transparent and straightforward test of gravity. We show that a simple \chi^2 test provides a general figure-of-merit for our ability to distinguish between dark energy and modified gravity given the measured H(z) and f_g(z). We study a magnitude-limited NIR galaxy redshift survey covering >10,000 (deg)^2 and the redshift range of 0.5<z<2. The resultant data can be divided into 7 redshift bins, and yield the measurement of H(z) to the accuracy of 1-2% via baryon acoustic oscillation measurements, and f_g(z) to the accuracy of a few percent via the measurement of redshift space distortions and the bias factor which describes how light traces mass. We find that if the H(z) data are fit by both a DGP gravity model and an equivalent dark energy model that predict the same expansion history, a survey area of 11,931 (deg)^2 is required to rule out the DGP gravity model at the 99.99% confidence level. It is feasible for such a galaxy redshift survey to be carried out by the next generation space missions from NASA and ESA, and it will revolutionize our understanding of the universe by differentiating between dark energy and modified gravity.Comment: 6 pages, 2 color figures. Expanded version accepted by JCA

    Environmental Dependence of Properties of Galaxies in the Sloan Digital Sky Survey

    Full text link
    We investigate the dependence of physical properties of galaxies brighter than M_r=-18.0 in the SDSS on environment, as measured by local density using an adaptive smoothing kernel. We find that variations of galaxy properties with environment are almost entirely due to the dependence of morphology and luminosity on environment. Because galaxy properties depend not only on luminosity but also on morphology, it is clear that galaxy properties cannot be determined solely by dark halo mass. When morphology and luminosity are fixed, other physical properties, such as color, color-gradient, concentration, size, velocity dispersion, and star formation rate, are nearly independent of local density. The only feature is the sharp decrease of late type fraction above the critical luminosity of about M_r=-21.3 in the morphology versus luminosity relation. Weak residual dependences on environment include that of the color of late-types (bluer at lower density) and of the L-sigma relation of early-types (larger dispersion at higher density for bright galaxies). The early-type fraction is a monotonically increasing function of local density and luminosity. The morphology-density- luminosity relation should be a key constraint on galaxy formation models. We demonstrate that the dependence on environment of the morphology of galaxie originates from variations in density on effective Gaussian smoothing scales much smaller than 12 h^{-1}Mpc. We find that galaxy morphology varies both with density measured on an effective Gaussian smoothing scale of 4.7 h^{-1} Mpc and on distance to the nearest bright galaxy (particularly, for about 0.2 h^{-1}Mpc). We propose a mechanism that the morphology of galaxies in galaxy systems is transformed by the tidal force.Comment: typos corrected, matched to the published versio

    Lensing at cosmological scales: a test of higher dimensional gravity

    Full text link
    Recent developments in gravitational lensing astronomy have paved the way to genuine mappings of the gravitational potential at cosmological scales. We stress that comparing these data with traditional large scale structure surveys will provide us with a test of gravity at such scales. These constraints could be of great importance in the framework of higher dimensional cosmological models.Comment: 4 pages, latex, 3 figure
    corecore