1,011 research outputs found

    An isoprenylation and palmitoylation motif promotes intraluminal vesicle delivery of proteins in cells from distant species

    Get PDF
    12 p.-7 fig.The C-terminal ends of small GTPases contain hypervariable sequences which may be posttranslationally modified by defined lipid moieties. The diverse structural motifs generated direct proteins towards specific cellular membranes or organelles. However, knowledge on the factors that determine these selective associations is limited. Here we show, using advanced microscopy, that the isoprenylation and palmitoylation motif of human RhoB (–CINCCKVL) targets chimeric proteins to intraluminal vesicles of endolysosomes in human cells, displaying preferential co-localization with components of the late endocytic pathway. Moreover, this distribution is conserved in distant species, including cells from amphibians, insects and fungi. Blocking lipidic modifications results in accumulation of CINCCKVL chimeras in the cytosol, from where they can reach endolysosomes upon release of this block. Remarkably, CINCCKVL constructs are sorted to intraluminal vesicles in a cholesterol-dependent process. In the lower species, neither the C-terminal sequence of RhoB, nor the endosomal distribution of its homologs are conserved; in spite of this, CINCCKVL constructs also reach endolysosomes in Xenopus laevis and insect cells. Strikingly, this behavior is prominent in the filamentous ascomycete fungus Aspergillus nidulans, in which GFP-CINCCKVL is sorted into endosomes and vacuoles in a lipidation-dependent manner and allows monitoring endosomal movement in live fungi. In summary, the isoprenylated and palmitoylated CINCCKVL sequence constitutes a specific structure which delineates an endolysosomal sorting strategy operative in phylogenetically diverse organisms.This work was supported by grants SAF2009-11642 and SAF2012-36519 from MINECO and RETIC RD12/0013/0008 to DPS, grants BIO2012-30695 fromcMINECO and S2010/BMD-2414 from Comunidad de Madrid to MAP, and grants from the Norwegian Cancer Society and the South-Eastern Norway Regional Health Authority to HS. CLO is supported by the FPI program from MINECO (BES-2010-033718). The stay of CLO at HS laboratory was supported by the short stay grant EEBB-I-12-04482 from MINECO.Peer reviewe

    Study of UV Degradation on Plastic (PET) Aerosols

    Get PDF
    The present study was aimed to explore the impact of UV radiation, from ‘real world’ environmental exposure, on the degradation of plastic PET aerosol containers. Additionally, the intent was to correlate the ‘real world’ environmental exposure to artificial sunlight, using a Xenon-Arc lamp, to develop a simulated test. The standardized methodology could then be used to evaluate the integrity of the plastic aerosol container and product, without the complexity of using ‘real world’ exposure. Through this study, a lab method was developed and validated that would simulate the effect of UV radiation using the Xenon-Arc. Moreover, a correlation was made for conditions inside the Xenon-Arc chamber that were conducive to testing a plastic pressurized container

    Histone deacetylase inhibitors synergize with sildenafil to suppress purine metabolism and proliferation in pulmonary hypertension

    Get PDF
    RATIONALE: Sildenafil, a well-known vasodilator known to interfere with purinergic signaling through effects on cGMP, is a mainstay in the treatment of pulmonary hypertension (PH). However, little is known regarding its effects on the metabolic reprogramming of vascular cells, which is a hallmark of PH. Purine metabolism, especially intracellular de novo purine biosynthesis is essential for vascular cell proliferation. Since adventitial fibroblasts are critical contributors to proliferative vascular remodeling in PH, in this study we aimed to investigate if sildenafil, beyond its well-known vasodilator role in smooth muscle cells, impacts intracellular purine metabolism and proliferation of fibroblasts derived from human PH patients. METHODS: Integrated omics approaches (plasma and cell metabolomics) and pharmacological inhibitor approaches were employed in plasma samples and cultured pulmonary artery fibroblasts from PH patients. MEASUREMENTS AND MAIN RESULTS: Plasma metabolome analysis of 27 PH patients before and after treatment with sildenafil, demonstrated a partial, but specific effect of sildenafil on purine metabolites, especially adenosine, adenine, and xanthine. However, circulating markers of cell stress, including lactate, succinate, and hypoxanthine were only decreased in a small subset of sildenafil-treated patients. To better understand potential effects of sildenafil on pathological changes in purine metabolism (especially purine synthesis) in PH, we performed studies on pulmonary fibroblasts from PAH patients (PH-Fibs) and corresponding controls (CO-Fibs), since these cells have previously been shown to demonstrate stable and marked PH associated phenotypic and metabolic changes. We found that PH-Fibs exhibited significantly increased purine synthesis. Treatment of PH-Fibs with sildenafil was insufficient to normalize cellular metabolic phenotype and only modestly attenuated the proliferation. However, we observed that treatments which have been shown to normalize glycolysis and mitochondrial abnormalities including a PKM2 activator (TEPP-46), and the histone deacetylase inhibitors (HDACi), SAHA and Apicidin, had significant inhibitory effects on purine synthesis. Importantly, combined treatment with HDACi and sildenafil exhibited synergistic inhibitory effects on proliferation and metabolic reprogramming in PH-Fibs. CONCLUSIONS: While sildenafil alone partially rescues metabolic alterations associated with PH, treatment with HDACi, in combination with sildenafil, represent a promising and potentially more effective strategy for targeting vasoconstriction, metabolic derangement and pathological vascular remodeling in PH

    SCOPE: a scorecard for osteoporosis in Europe

    Get PDF
    Summary The scorecard summarises key indicators of the burden of osteoporosis and its management in each of the member states of the European Union. The resulting scorecard elements were then assembled on a single sheet to provide a unique overview of osteoporosis in Europe. Introduction The scorecard for osteoporosis in Europe (SCOPE) is an independent project that seeks to raise awareness of osteoporosis care in Europe. The aim of this project was to develop a scorecard and background documents to draw attention to gaps and inequalities in the provision of primary and secondary prevention of fractures due to osteoporosis. Methods The SCOPE panel reviewed the information available on osteoporosis and the resulting fractures for each of the 27 countries of the European Union (EU27). The information researched covered four domains: background information (e.g. the burden of osteoporosis and fractures), policy framework, service provision and service uptake e.g. the proportion of men and women at high risk that do not receive treatment (the treatment gap). Results There was a marked difference in fracture risk among the EU27. Of concern was the marked heterogeneity in the policy framework, service provision and service uptake for osteoporotic fracture that bore little relation to the fracture burden. For example, despite the wide availability of treatments to prevent fractures, in the majority of the EU27, only a minority of patients at high risk receive treatment for osteoporosis even after their first fracture. The elements of each domain in each country were scored and coded using a traffic light system (red, orange, green) and used to synthesise a scorecard. The resulting scorecard elements were then assembled on a single sheet to provide a unique overview of osteoporosis in Europe. Conclusions The scorecard will enable healthcare professionals and policy makers to assess their country’s general approach to the disease and provide indicators to inform future provision of healthcare

    Stereotactic Body Radiation Therapy for Primary and Metastatic Liver Tumors

    Get PDF
    AbstractOBJECTIVES: The full potential of stereotactic body radiation therapy (SBRT), in the treatment of unresectable intrahepatic malignancies, has yet to be realized as our experience is still limited. Thus, we evaluated SBRT outcomes for primary and metastatic liver tumors, with the goal of identifying factors that may aid in optimization of therapy. METHODS: From2005 to 2010, 62 patients with 106 primary and metastatic liver tumors were treated with SBRT to a median biologic effective dose (BED) of 100 Gy (42.6-180). The majority of patients received either three (47%) or five fractions (48%). Median gross tumor volume (GTV) was 8.8 cm3 (0.2-222.4). RESULTS: With a median followup of 18 months (0.46-46.8), freedom from local progression (FFLP) was observed in 97 of 106 treated tumors, with 1- and 2-year FFLP rates of 93% and 82%. Median overall survival (OS) for all patients was 25.2 months, with 1- and 2-year OS of 81%and 52%. Neither BED nor GTV significantly predicted for FFLP. Local failure was associated with a higher risk of death [hazard ratio (HR) = 5.1, P = .0007]. One Child-Pugh Class B patient developed radiationinduced liver disease. There were no other significant toxicities. CONCLUSIONS: SBRT provides excellent local control for both primary and metastatic liver lesions with minimal toxicity. Future studies should focus on appropriate selection of patients and on careful assessment of liver function to maximize both the safety and efficacy of treatment

    Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes

    Get PDF
    To investigate the degradation mechanism of misfolded membrane proteins from the cell surface, we used mutant cystic fibrosis transmembrane conductance regulators (CFTRs) exhibiting conformational defects in post-Golgi compartments. Here, we show that the folding state of CFTR determines the post-endocytic trafficking of the channel. Although native CFTR recycled from early endosomes back to the cell surface, misfolding prevented recycling and facilitated lysosomal targeting by promoting the ubiquitination of the channel. Rescuing the folding defect or down-regulating the E1 ubiquitin (Ub)-activating enzyme stabilized the mutant CFTR without interfering with its internalization. These observations with the preferential association of mutant CFTRs with Hrs, STAM-2, TSG101, hVps25, and hVps32, components of the Ub-dependent endosomal sorting machinery, establish a functional link between Ub modification and lysosomal degradation of misfolded CFTR from the cell surface. Our data provide evidence for a novel cellular mechanism of CF pathogenesis and suggest a paradigm for the quality control of plasma membrane proteins involving the coordinated function of ubiquitination and the Ub-dependent endosomal sorting machinery

    The Ubiquitous Dermokine Delta Activates Rab5 Function in the Early Endocytic Pathway

    Get PDF
    The expression of the recently identified dermokine (Dmkn) gene leads to four families of proteins with as yet unknown functions. The secreted α, β and γ isoforms share an epidermis-restricted expression pattern, whereas the δ isoform is intracellular and ubiquitous. To get an insight into Dmknδ function, we performed yeast two-hybrid screening and identified the small GTPases Rab5 as partners for Dmknδ. The Rab5 proteins are known to regulate membrane docking and fusion in the early endocytic pathway. GST pull-down assays confirmed the direct interaction between Rab5 and Dmknδ. Transient expression of Dmknδ in HeLa cells led to the formation of punctate structures colocalized with endogenous Rab5 and clathrin, indicating Dmknδ involvement in the early steps of endocytosis. Dmknδ indeed colocalized with transferrin at early stages of endocytosis, but did not modulate its endocytosis or recycling kinetics. We also showed that Dmknδ was able to bind both inactive (GDP-bound) and active (GTP-bound) forms of Rab5 in vitro but preferentially targeted GDP-bound form in HeLa cells. Interestingly, Dmknδ expression rescued the Rab5S34N-mediated inhibition of endosome fusion. Moreover, Dmknδ caused the enlargement of vesicles positive for Rab5 by promoting GTP loading onto the small GTPase. Together our data reveal that Dmknδ activates Rab5 function and thus is involved in the early endosomal trafficking

    Biogenesis of the inner membrane complex is dependent on vesicular transport by the alveolate specific GTPase Rab11B

    Get PDF
    Apicomplexan parasites belong to a recently recognised group of protozoa referred to as Alveolata. These protists contain membranous sacs (alveoli) beneath the plasma membrane, termed the Inner Membrane Complex (IMC) in the case of Apicomplexa. During parasite replication the IMC is formed de novo within the mother cell in a process described as internal budding. We hypothesized that an alveolate specific factor is involved in the specific transport of vesicles from the Golgi to the IMC and identified the small GTPase Rab11B as an alveolate specific Rab-GTPase that localises to the growing end of the IMC during replication of Toxoplasma gondii. Conditional interference with Rab11B function leads to a profound defect in IMC biogenesis, indicating that Rab11B is required for the transport of Golgi derived vesicles to the nascent IMC of the daughter cell. Curiously, a block in IMC biogenesis did not affect formation of sub-pellicular microtubules, indicating that IMC biogenesis and formation of sub-pellicular microtubules is not mechanistically linked. We propose a model where Rab11B specifically transports vesicles derived from the Golgi to the immature IMC of the growing daughter parasites

    Religion, Partisanship, and Attitudes Toward Science Policy

    Get PDF
    We examine issues involving science which have been contested in recent public debate. These “contested science” issues include human evolution, stem-cell research, and climate change. We find that few respondents evince consistently skeptical attitudes toward science issues, and that religious variables are generally strong predictors of attitudes toward individual issues. Furthermore, and contrary to analyses of elite discourse, partisan identification is not generally predictive of attitudes toward contested scientific issues
    corecore