70 research outputs found

    A possible mechanism for cold denaturation of proteins at high pressure

    Get PDF
    We study cold denaturation of proteins at high pressures. Using multicanonical Monte Carlo simulations of a model protein in a water bath, we investigate the effect of water density fluctuations on protein stability. We find that above the pressure where water freezes to the dense ice phase (2\approx2 kbar), the mechanism for cold denaturation with decreasing temperature is the loss of local low-density water structure. We find our results in agreement with data of bovine pancreatic ribonuclease A.Comment: 4 pages for double column and single space. 3 figures Added references Changed conten

    Differential Scanning Fluorimetry provides high throughput data on silk protein transitions

    Get PDF
    Here we present a set of measurements using Differential Scanning Fluorimetry (DSF) as an inexpensive, high throughput screening method to investigate the folding of silk protein molecules as they abandon their first native melt conformation, dehydrate and denature into their final solid filament conformation. Our first data and analyses comparing silks from spiders, mulberry and wild silkworms as well as reconstituted ‘silk’ fibroin show that DSF can provide valuable insights into details of silk denaturation processes that might be active during spinning. We conclude that this technique and technology offers a powerful and novel tool to analyse silk protein transitions in detail by allowing many changes to the silk solutions to be tested rapidly with microliter scale sample sizes. Such transition mechanisms will lead to important generic insights into the folding patterns not only of silks but also of other fibrous protein (bio)polymers

    Membrane chemical stability and seed longevity

    Get PDF
    Here, we investigate the relationships between the chemical stability of the membrane surface and seed longevity. Dry embryos of long-lived tomato and short-lived onion seeds were labeled with 5-doxyl-stearic acid (5-DS). Temperature-induced loss of the electron spin resonance signal caused by chemical conversion of 5-DS to nonparamagnetic species was used to characterize the membrane surface chemical stability. No difference was found between temperature plots of 5-DS signal intensity in dry onion and tomato below 345 K. Above this temperature, the 5-DS signal remained unchanged in tomato embryos and irreversibly disappeared in onion seeds. The role of the physical state and chemical status of the membrane environment in the chemical stability of membrane surfaces was estimated for model systems containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) dried alone or in the presence of trehalose or glucose. Fourier transform infrared spectroscopy was used to follow temperature-induced structural changes in dry POPC. Spin-label technique was used to relate the chemical stability of 5-DS with the dynamic properties of the bilayer and 5-DS motion behavior. In all the models, the decrease in 5-DS signal intensity was always observed above Tm for the membrane surface. The 5-DS signal was irreversibly lost at high temperature when dry POPC was embedded in a glucose matrix. The loss of 5-DS signal was moderate when POPC was dried alone or in the presence of trehalose. Comparison of model and in vivo data shows that the differences in longevity between onion and tomato seeds are caused by differences in the chemical status of the membrane surface rather than the degree of its immobilization

    Pressure Effect on the Temperature Unfolding and Gelation of Myoglobin

    No full text

    Pressure effects on biopolymer structure and dynamics

    No full text
    Some thermodynamic and kinetic features of the stability diagram of biopolymers are discussed. Emphasis is on the relation between pressure- and temperature-induced protein unfolding, aggregation and gel formation. The consequences for gel formation in biopolymer mixtures of protein and polysaccharides are indicated.status: publishe

    Pressure-induced amorphization in biopolymers

    No full text
    Pressure-induced unfolding of proteins in solution shows analogies to the pressure-induced amorphization observed in some inorganic and polymer systems. More specifically, pressure gives rise to conformations that show a strong tendency to form supramolecular aggregates that have some relevance to molecular diseases. Hydrostatic pressure can tune the conformation of the intermediates along the unfolding/aggregation pathway. Pressure can also be used to probe the stability of the aggregate, and thus the interactions that are responsible for it. In particular, we demonstrate that pressure might be an interesting tool to study the fibril formation. Fourier transform infrared spectroscopy reveals the presence of fibril secondary structures other than random coil and intermolecular beta-sheet.status: publishe
    corecore