37,173 research outputs found

    Experimental studies on the tripping behavior of narrow T-stiffened flat plates subjected to hydrostatic pressure and underwater shock

    Get PDF
    An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior

    Thermal And Mechanical Analysis of High-power Light-emitting Diodes with Ceramic Packages

    Get PDF
    In this paper we present the thermal and mechanical analysis of high-power light-emitting diodes (LEDs) with ceramic packages. Transient thermal measurements and thermo-mechanical simulation were performed to study the thermal and mechanical characteristics of ceramic packages. Thermal resistance from the junction to the ambient was decreased from 76.1 oC/W to 45.3 oC/W by replacing plastic mould to ceramic mould for LED packages. Higher level of thermo-mechanical stresses in the chip were found for LEDs with ceramic packages despite of less mismatching coefficients of thermal expansion comparing with plastic packages. The results suggest that the thermal performance of LEDs can be improved by using ceramic packages, but the mounting process of the high power LEDs with ceramic packages is critically important and should be in charge of delaminating interface layers in the packages.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Optical properties of the charge-density-wave polychalcogenide compounds R2R_2Te5_5 (RR=Nd, Sm and Gd)

    Full text link
    We investigate the rare-earth polychalcogenide R2R_2Te5_5 (RR=Nd, Sm and Gd) charge-density-wave (CDW) compounds by optical methods. From the absorption spectrum we extract the excitation energy of the CDW gap and estimate the fraction of the Fermi surface which is gapped by the formation of the CDW condensate. In analogy to previous findings on the related RRTen_n (n=2 and 3) families, we establish the progressive closing of the CDW gap and the moderate enhancement of the metallic component upon chemically compressing the lattice

    Enhancement of the conductivity of Ba2In2O5 through phosphate doping

    Get PDF
    In this paper, we demonstrate the successful incorporation of phosphate into Ba2In2O5, which leads to the conversion from an orthorhombic to a cubic unit cell. The resulting increased oxygen vacancy disorder leads to an enhancement in the oxide ion conductivity at low temperatures. In addition, in wet atmospheres, significant proton conduction is observed

    P11 Resonances with Dubna-Mainz-Taipei Dynamical Model for pi-N Scattering and Pion Electromagnetic Production

    Full text link
    We present the results on P11 resonances obtained with Dubna-Mainz-Taipei (DMT) dynamical model for pion-nucleon scattering and pion electromagnetic production. The extracted values agree well, in general, with PDG values. One pole is found corresponding to the Roper resonance and two more resonances are definitely needed in DMT model. We further find indication for a narrow P11 resonance at around 1700 MeV with a width of around 50 MeV in both pi-N and gamma-pi reactions.Comment: Contribution to the Proceedings of NSTAR 2011 - The 8th International Workshop on the Physics of Excited Nucleons, May 17-20, 2011, Thomas Jefferson National Accelerator Facility, Newport News, Virginia US

    Computed tomographic imaging characteristics of the normal canine lacrimal glands.

    Get PDF
    BackgroundThe canine lacrimal gland (LG) and accessory lacrimal gland of the third eyelid (TEG) are responsible for production of the aqueous portion of the precorneal tear film. Immune-mediated, toxic, neoplastic, or infectious processes can affect the glands directly or can involve adjacent tissues, with secondary gland involvement. Disease affecting these glands can cause keratoconjunctivitis sicca, corneal ulcers, and loss of vision. Due to their location in the orbit, these small structures are difficult to evaluate and measure, making cross-sectional imaging an important diagnostic tool. The detailed cross-sectional imaging appearance of the LG and TEG in dogs using computed tomography (CT) has not been reported to date.ResultsForty-two dogs were imaged, and the length, width, and height were measured and the volume calculated for the LGs & TEGs. The glands were best visualized in contrast-enhanced CT images. The mean volume of the LG was 0.14 cm3 and the TEG was 0.1 cm3. The mean height, width, and length of the LG were, 9.36 mm, 4.29 mm, and 9.35 mm, respectively; the corresponding values for the TEG was 2.02 mm, 9.34 mm, and 7.90 mm. LG and TEG volume were positively correlated with body weight (p < 0.05).ConclusionsContrast-enhanced CT is a valuable tool for noninvasive assessment of canine lacrimal glands

    Numerical simulation of super-square patterns in Faraday waves

    Full text link
    We report the first simulations of the Faraday instability using the full three-dimensional Navier-Stokes equations in domains much larger than the characteristic wavelength of the pattern. We use a massively parallel code based on a hybrid Front-Tracking/Level-set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces. Simulations performed in rectangular and cylindrical domains yield complex patterns. In particular, a superlattice-like pattern similar to those of [Douady & Fauve, Europhys. Lett. 6, 221-226 (1988); Douady, J. Fluid Mech. 221, 383-409 (1990)] is observed. The pattern consists of the superposition of two square superlattices. We conjecture that such patterns are widespread if the square container is large compared to the critical wavelength. In the cylinder, pentagonal cells near the outer wall allow a square-wave pattern to be accommodated in the center

    Signatures of macroscopic quantum coherence in ultracold dilute Fermi gases

    Full text link
    We propose a double-well configuration for optical trapping of ultracold two-species Fermi-Bose atomic mixtures. Two signatures of macroscopic quantum coherence attributable to a superfluid phase transition for the Fermi gas are analyzed. The first signature is based upon tunneling of Fermi pairs when the power of the deconfining laser beam is significantly reduced. The second relies on the observation of interference fringes in a regime where the fermions are trapped in two sharply separated minima of the potential. Both signatures rely on small decoherence times for the Fermi samples, which should be possible by reaching low temperatures using a Bose gas as a refrigerator, and a bichromatic optical dipole trap for confinement, with optimal heat-capacity matching between the two species

    Oblique DLCQ M-theory and Multiple M2-branes

    Full text link
    We propose an oblique DLCQ as a limit to realize a theory of multiple M2-branes in M(atrix)-theory context. The limit is a combination of an infinite boosting of a space-like circle and a tuned tilting of the circle direction. We obtain a series of supergravity solutions describing various dual configurations including multiple M2-branes. For an infinite boosting along a circle wrapped obliquely around a rectangular torus, Seiberg's DLCQ limit distorts the torus modulus. In the context of supergravity, we show explicitly how this torus modulus of M~\widetilde{\text M}-theory is realized as the vacuum modulus of dual IIB-theory.Comment: v3: 25pages, extended version, References adde

    Shear-induced criticality near a liquid-solid transition of colloidal suspensions

    Full text link
    We investigate colloidal suspensions under shear flow through numerical experiments. By measuring the time-correlation function of a bond-orientational order parameter, we find a divergent time scale near a transition point from a disordered fluid phase to an ordered fluid phase, where the order is characterized by a nonzero value of the bond-orientational order parameter. We also present a phase diagram in the (ρ,γ˙ex)(\rho, \dot{\gamma}^{\mathrm{ex}}) plane, where ρ\rho is the density of the colloidal particles and γ˙ex\dot{\gamma}^{\mathrm{ex}} is the shear rate of the solvent. The transition line in the phase diagram terminates at the equilibrium transition point, while a critical region near the transition line vanishes continuously as γ˙ex0\dot{\gamma}^{\mathrm{ex}} \rightarrow 0.Comment: 4 pages, 8 figure
    corecore