3,793 research outputs found
Towards Quantum Superpositions of a Mirror: an Exact Open Systems Analysis
We analyze the recently proposed mirror superposition experiment of Marshall,
Simon, Penrose, and Bouwmeester, assuming that the mirror's dynamics contains a
non-unitary term of the Lindblad type proportional to -[q,[q,\rho]], with q the
position operator for the center of mass of the mirror, and \rho the
statistical operator. We derive an exact formula for the fringe visibility for
this system. We discuss the consequences of our result for tests of
environmental decoherence and of collapse models. In particular, we find that
with the conventional parameters for the CSL model of state vector collapse,
maintenance of coherence is expected to within an accuracy of at least 1 part
in 10^{8}. Increasing the apparatus coupling to environmental decoherence may
lead to observable modifications of the fringe visibility, with time dependence
given by our exact result.Comment: 4 pages, RevTeX. Substantial changes mad
Mathematics of random growing interfaces
We establish a thermodynamic limit and Gaussian fluctuations for the height
and surface width of the random interface formed by the deposition of particles
on surfaces. The results hold for the standard ballistic deposition model as
well as the surface relaxation model in the off-lattice setting. The results
are proved with the aid of general limit theorems for stabilizing functionals
of marked Poisson point processes.Comment: 12 page
The frictional Schr\"odinger-Newton equation in models of wave function collapse
Replacing the Newtonian coupling G by -iG, the Schrodinger-Newton equation
becomes ``frictional''. Instead of the reversible Schrodinger-Newton equation,
we advocate its frictional version to generate the set of pointer states for
macroscopic quantum bodies.Comment: 6pp LaTeX for J.Phys.Conf.Ser.+2 figs. Talk given at the Int.
Workshop DICE2006 "Quantum Mechanics between Decoherence and Determinism: new
aspects from particle physics to cosmology" Piombino, Sept 11-15, 200
Spin-Raising Operators and Spin-3/2 Potentials in Quantum Cosmology
Local boundary conditions involving field strengths and the normal to the
boundary, originally studied in anti-de Sitter space-time, have been recently
considered in one-loop quantum cosmology. This paper derives the conditions
under which spin-raising operators preserve these local boundary conditions on
a 3-sphere for fields of spin 0,1/2,1,3/2 and 2. Moreover, the two-component
spinor analysis of the four potentials of the totally symmetric and independent
field strengths for spin 3/2 is applied to the case of a 3-sphere boundary. It
is shown that such boundary conditions can only be imposed in a flat Euclidean
background, for which the gauge freedom in the choice of the potentials
remains.Comment: 13 pages, plain-tex, recently appearing in Classical and Quantum
Gravity, volume 11, April 1994, pages 897-903. Apologies for the delay in
circulating the file, due to technical problems now fixe
Schulman Replies
This is a reply to a comment of Casati, Chirikov and Zhirov (PRL 85, 896
(2000)) on PRL 83, 5419 (1999).
The suitability of the particlar two-time boundary value problem used in the
earlier PRL is argued
Linearized gravity and gauge conditions
In this paper we consider the field equations for linearized gravity and
other integer spin fields on the Kerr spacetime, and more generally on
spacetimes of Petrov type D. We give a derivation, using the GHP formalism, of
decoupled field equations for the linearized Weyl scalars for all spin weights
and identify the gauge source functions occuring in these. For the spin weight
0 Weyl scalar, imposing a generalized harmonic coordinate gauge yields a
generalization of the Regge-Wheeler equation. Specializing to the Schwarzschild
case, we derive the gauge invariant Regge-Wheeler and Zerilli equation directly
from the equation for the spin 0 scalar.Comment: 24 pages, corresponds to published versio
Spherical gravitational collapse in N-dimensions
We investigate here spherically symmetric gravitational collapse in a
spacetime with an arbitrary number of dimensions and with a general {\it type
I} matter field, which is a broad class that includes most of the physically
reasonable matter forms. We show that given the initial data for matter in
terms of the initial density and pressure profiles at an initial surface
from which the collapse evolves, there exist rest of the initial data
functions and classes of solutions of Einstein equations which we construct
here, such that the spacetime evolution goes to a final state which is either a
black hole or a naked singularity, depending on the nature of initial data and
evolutions chosen, and subject to validity of the weak energy condition. The
results are discussed and analyzed in the light of the cosmic censorship
hypothesis in black hole physics. The formalism here combines the earlier
results on gravitational collapse in four dimensions in a unified treatment.
Also the earlier work is generalized to higher dimensional spacetimes to allow
a study of the effect of number of dimensions on the possible final outcome of
the collapse in terms of either a black hole or naked singularity. No
restriction is adopted on the number of dimensions, and other limiting
assumptions such as self-similarity of spacetime are avoided, in order to keep
the treatment general. Our methodology allows to consider to an extent the
genericity and stability aspects related to the occurrence of naked
singularities in gravitational collapse.Comment: Revtex4, The replaced version matches the published on
Beyond the veil: Inner horizon instability and holography
We show that scalar perturbations of the eternal, rotating BTZ black hole
should lead to an instability of the inner (Cauchy) horizon, preserving strong
cosmic censorship. Because of backscattering from the geometry, plane wave
modes have a divergent stress tensor at the event horizon, but suitable
wavepackets avoid this difficulty, and are dominated at late times by
quasinormal behavior. The wavepackets have cuts in the complexified coordinate
plane that are controlled by requirements of continuity, single-valuedness and
positive energy. Due to a focusing effect, regular wavepackets nevertheless
have a divergent stress-energy at the inner horizon, signaling an instability.
This instability, which is localized behind the event horizon, is detected
holographically as a breakdown in the semiclassical computation of dual CFT
expectation values in which the analytic behavior of wavepackets in the
complexified coordinate plane plays an integral role. In the dual field theory,
this is interpreted as an encoding of physics behind the horizon in the
entanglement between otherwise independent CFTs.Comment: 40 pages, LaTeX, 3 eps figures, v2: references adde
3D simulations of the accretion process in Kerr space-time with arbitrary value of the spin parameter
We present the results of three-dimensional general relativistic hydrodynamic
simulations of adiabatic and spherically symmetric accretion in Kerr
space-time. We consider compact objects with spin parameter
(black holes) and with (super-spinars). Our full three-dimensional
simulations confirm the formation of equatorial outflows for high values of
, as found in our previous work in 2.5 dimensions. We show that the
critical value of determining the onset of powerful outflows depends
mainly on the radius of the compact object. The phenomenon of equatorial
outflows can hardly occur around a black hole and may thus be used to test the
bound for astrophysical black hole candidates.Comment: 13 pages, 9 figures. v2: refereed versio
Generating dynamical black hole solutions
We prove a theorem that characterizes a large family of non-static solutions
to Einstein equations, representing, in general, spherically symmetric Type II
fluid. It is shown that the best known dynamical black hole solutions to
Einstein equations are particular cases from this family. Thus we extend a
recent work of Salgado \cite{ms} to non-static case. The spherically symmetric
static black hole solutions, for Type I fluid, are also retrieved.Comment: 8 Pages, RevTe
- …