We show that scalar perturbations of the eternal, rotating BTZ black hole
should lead to an instability of the inner (Cauchy) horizon, preserving strong
cosmic censorship. Because of backscattering from the geometry, plane wave
modes have a divergent stress tensor at the event horizon, but suitable
wavepackets avoid this difficulty, and are dominated at late times by
quasinormal behavior. The wavepackets have cuts in the complexified coordinate
plane that are controlled by requirements of continuity, single-valuedness and
positive energy. Due to a focusing effect, regular wavepackets nevertheless
have a divergent stress-energy at the inner horizon, signaling an instability.
This instability, which is localized behind the event horizon, is detected
holographically as a breakdown in the semiclassical computation of dual CFT
expectation values in which the analytic behavior of wavepackets in the
complexified coordinate plane plays an integral role. In the dual field theory,
this is interpreted as an encoding of physics behind the horizon in the
entanglement between otherwise independent CFTs.Comment: 40 pages, LaTeX, 3 eps figures, v2: references adde