90 research outputs found

    MEMS-based Speckle Spectrometer

    Get PDF
    We describe a new concept for a MEMS-based active spatial filter for astronomical spectroscopy. The goal of this device is to allow the use of a diffraction-limited spectrometer on a seeing limited observation at improved throughput over a comparable seeing-limited spectrometer, thus reducing the size and cost of the spectrometer by a factor proportional to r0/D (For the case of a 10 meter telescope this size reduction will be approximately a factor of 25 to 50). We use a fiber-based integral field unit (IFU) that incorporates an active MEMS mirror array to feed an astronomical spectrograph. A fast camera is used in parallel to sense speckle images at a spatial resolution of lambda/D and at a temporal frequency greater than that of atmospheric fluctuations. The MEMS mirror-array is used as an active shutter to feed speckle images above a preset intensity threshold to the spectrometer, thereby increasing the signal-to-noise ratio (SNR) of the spectrogram. Preliminary calculations suggests an SNR improvement of a factor of about 1.4. Computer simulations have shown an SNR improvement of 1.1, but have not yet fully explored the parameter space.Comment: 11 pages, 5 figures, presented at SPIE Astronomical Telescopes and Instrumentation, 24 - 31 May 2006, Orlando, Florida US

    The small-scale Structure of the Magellanic Stream as a Foundation for Galaxy Evolution

    Full text link
    The Magellanic Stream (MS) is the nearest example of a gaseous trail formed by interacting galaxies. While the substantial gas masses in these kinds of circumgalactic structures are postulated to represent important sources of fuel for future star formation, the mechanisms whereby this material might be accreted back into galaxies remain unclear. Recent neutral hydrogen (HI) observations have demonstrated that the northern portion of the MS, which probably has been interacting with the Milky Way's hot gaseous halo for close to 1000~Myr, has a larger spatial extent than previously recognized, while also containing significant amounts of small-scale structure. After a brief consideration of the large-scale kinematics of the MS as traced by the recently-discovered extension of the MS, we explore the aging process of the MS gas through the operation of various hydrodynamic instabilities and interstellar turbulence. This in turn leads to consideration of processes whereby MS material survives as cool gas, and yet also evidently fails to form stars. Parallels between the MS and extragalactic tidal features are briefly discussed with an emphasis on steps toward establishing what the MS reveals about the critical role of local processes in determining the evolution of these kinds of systems

    Quality Control of Data Through Statistical Control

    Get PDF

    Combining Smart Darting with Parallel Tempering Using Eckart Space: Application to Lennard–Jones Clusters

    Get PDF
    The smart-darting algorithm is a Monte Carlo based simulation method used to overcome quasiergodicity problems associated with disconnected regions of configurations space separated by high energy barriers. As originally implemented, the smart-darting method works well for clusters at low temperatures with the angular momentum restricted to zero and where there are no transitions to permutational isomers. If the rotational motion of the clusters is unrestricted or if permutational isomerization becomes important, the acceptance probability of darting moves in the original implementation of the method becomes vanishingly small. In this work the smart-darting algorithm is combined with the parallel tempering method in a manner where both rotational motion and permutational isomerization events are important. To enable the combination of parallel tempering with smart darting so that the smart-darting moves have a reasonable acceptance probability, the original algorithm is modified by using a restricted space for the smart-darting moves. The restricted space uses a body-fixed coordinate system first introduced by Eckart, and moves in this Eckart space are coupled with local moves in the full 3 N-dimensional space. The modified smart-darting method is applied to the calculation of the heat capacity of a seven-atom Lennard–Jones cluster. The smart-darting moves yield significant improvement in the statistical fluctuations of the calculated heat capacity in the region of temperatures where the system isomerizes. When the modified smart-darting algorithm is combined with parallel tempering, the statistical fluctuations of the heat capacity of a seven-atom Lennard–Jones cluster using the combined method are smaller than parallel tempering when used alone

    NGC 602 Environment, Kinematics and Origins

    Full text link
    The young star cluster NGC 602 and its associated HII region, N90, formed in a relatively isolated and diffuse environment in the Wing of the Small Magellanic Cloud. Its isolation from other regions of massive star formation and the relatively simple surrounding HI shell structure allows us to constrain the processes that may have led to its formation and to study conditions leading to massive star formation. We use images from Hubble Space Telescope and high resolution echelle spectrographic data from the Anglo-Australian Telescope along with 21-cm neutral hydrogen (HI) spectrum survey data and the shell catalogue derived from it to establish a likely evolutionary scenario leading to the formation of NGC 602. We identify a distinct HI cloud component that is likely the progenitor cloud of the cluster and HII region which probably formed in blister fashion from the cloud's periphery. We also find that the past interaction of HI shells can explain the current location and radial velocity of the nebula. The surrounding Interstellar Medium is diffuse and dust-poor as demonstrated by a low visual optical depth throughout the nebula and an average HI density of the progenitor cloud estimated at 1 cm^-3. These conditions suggest that the NGC 602 star formation event was produced by compression and turbulence associated with HI shell interactions. It therefore represents a single star forming event in a low gas density region.Comment: Accepted for publication in PASP. 25 pages, 10 figure

    Is radical innovation in architecture crucial to sustainability? Lessons from three Scottish contemporary buildings

    Get PDF
    Radical innovation is largely recognised as a medium for advancement, a source of growth for economies, and a trigger for progress in different economic sectors. Often, this type of innovation is identified with technological advancements, disruptive phenomena and the creation of new systems and dynamics. Yet, within the context of a changing world, in which principles of economic, environmental and social sustainability are largely adopted as common objectives, a reflection on the type of progress and the need for radical innovation is necessary with the aim of informing on their impacts and effectiveness. This work presents an analysis of a number of contemporary Scottish architectural designs, developed under the aegis of sustainability principles, and explores the types of sustainable innovations introduced and the results achieved by analyzing the type of design change that triggered specific sustainable results, demonstrating alternative innovation strategies, other than the radical one. This analysis provides a basis for discussion on the need for radical innovation in the context of sustainable architecture and explores the role of other types of innovation against the results achieved. This discussion could contribute to a better understanding of the current state of practice in architectural design, as well as in policy making in regard to the design and management of the future built environment
    • …
    corecore