29 research outputs found

    Autoantibodies to central nervous system neuronal surface antigens: psychiatric symptoms and psychopharmacological implications

    Get PDF

    Dynamic and specific interaction between synaptic NR2-NMDA receptor and PDZ proteins

    No full text
    The relative content of NR2 subunits in the NMDA receptor confers specific signaling properties and plasticity to synapses. However, the mechanisms that dynamically govern the retention of synaptic NMDARs, in particular 2A-NMDARs, remain poorly understood. Here, we investigate the dynamic interaction between NR2 C termini and proteins containing PSD-95/Discs-large/ZO-1 homology (PDZ) scaffold proteins at the single molecule level by using high-resolution imaging. We report that a biomimetic divalent competing ligand, mimicking the last 15 amino acids of NR2A C terminus, specifically and efficiently disrupts the interaction between 2A-NMDARs, but not 2B-NMDARs, and PDZ proteins on the time scale of minutes. Furthermore, displacing 2A-NMDARs out of synapses lead to a compensatory increase in synaptic NR2B-NMDARs, providing functional evidence that the anchoring mechanism of 2A- or 2B-NMDARs is different. These data reveal an unexpected role of the NR2 subunit divalent arrangement in providing specific anchoring within synapses, highlighting the need to study such dynamic interactions in native conditions

    Altered surface trafficking of presynaptic cannabinoid type 1 receptor in and out synaptic terminals parallels receptor desensitization

    No full text
    Presynaptic cannabinoid type 1 receptors (CB1Rs) are major mediators of retrograde synaptic plasticity at both excitatory and inhibitory synapses and participate in a plethora of physiological functions. Whether presynaptic receptors, such as CB1R, display functionally relevant movements at the surface of neuronal membranes is not known. We analyzed the lateral mobility of native CB1Rs in cortical neurons by using single-quantum dot imaging. We found that CB1Rs are highly mobile and rapidly diffuse in and out of presynapses. Agonist-induced desensitization correlated with a reduction in the fraction of surface CB1Rs and a drastic decrease in the membrane dynamic of the CB1Rs that remained at the presynaptic surface. Desensitization specifically excluded CB1Rs from synapses and increased the fraction of immobile receptors in the extrasynaptic compartment. The results suggest that decrease of mobility may be one of the core mechanisms underlying the desensitization of CB1R, the most abundant G protein-coupled receptor in the brain
    corecore