24,471 research outputs found
Nonlinear elasticity of monolayer graphene
By combining continuum elasticity theory and tight-binding atomistic
simulations, we work out the constitutive nonlinear stress-strain relation for
graphene stretching elasticity and we calculate all the corresponding nonlinear
elastic moduli. Present results represent a robust picture on elastic behavior
of one-atom thick carbon sheets and provide the proper interpretation of recent
experiments. In particular, we discuss the physical meaning of the effective
nonlinear elastic modulus there introduced and we predict its value in good
agreement with available data. Finally, a hyperelastic softening behavior is
observed and discussed, so determining the failure properties of graphene.Comment: 4 page
Regenerable biocide delivery unit
A method and apparatus are disclosed for maintaining continuous, long-term microbial control in the water supply for potable, hygiene, and experimental water for space activities, as well as treatment of water supplies on Earth. The water purification is accomplished by introduction of molecular iodine into the water supply to impart a desired iodine residual. The water is passed through an iodinated anion exchange resin bed. The iodine is bound as I-(sub n) at the anion exchange sites and releases I(sub 2) into the water stream flowing through the bed. The concentration of I(sub 2) in the flowing water gradually decreases and, in the prior art, the ion-exchange bed has had to be replaced. In a preferred embodiment, a bed of iodine crystals is provided with connections for flowing water therethrough to produce a concentrated (substantially saturated) aqueous iodine solution which is passed through the iodinated resin bed to recharge the bed with bound iodine. The bed of iodine crystals is connected in parallel with the iodinated resin bed and is activated periodically (e.g., by timer, by measured flow of water, or by iodine residual level) to recharge the bed. Novelty resides in the capability of inexpensively and repeatedly regenerating the ion-exchange bed in situ
High resolution analysis of satellite gradiometry
Satellite gravity gradiometry is a technique now under development which, by the middle of the next decade, may be used for the high resolution charting from space of the gravity field of the earth and, afterwards, of other planets. Some data analysis schemes are reviewed for getting detailed gravity maps from gradiometry on both a global and a local basis. It also presents estimates of the likely accuracies of such maps, in terms of normalized spherical harmonics expansions, both using gradiometry alone and in combination with data from a Global Positioning System (GPS) receiver carried on the same spacecraft. It compares these accuracies with those of current and future maps obtained from other data (conventional tracking, satellite-satellite tracking, etc.), and also with the spectra of various signals of geophysical interest
Schur functions and their realizations in the slice hyperholomorphic setting
we start the study of Schur analysis in the quaternionic setting using the
theory of slice hyperholomorphic functions. The novelty of our approach is that
slice hyperholomorphic functions allows to write realizations in terms of a
suitable resolvent, the so called S-resolvent operator and to extend several
results that hold in the complex case to the quaternionic case. We discuss
reproducing kernels, positive definite functions in this setting and we show
how they can be obtained in our setting using the extension operator and the
slice regular product. We define Schur multipliers, and find their co-isometric
realization in terms of the associated de Branges-Rovnyak space
- …
