456 research outputs found

    The Problem of Functional Boundaries in Prebiotic and Inter-Biological Systems

    Get PDF
    International audienceThe concept of organisational closure, interpreted as a set of internally produced and mutually dependent constraints, allows understanding organisms as functionally integrated systems capable of self-production and self-maintenance through the control exerted upon biosynthetic processes and the exchanges of matter and energy with the environment. One of the current challenges faced by this theoretical framework is to account for limit cases in which a robust functional closure cannot be realised from within. In order to achieve functional sufficiency and persist, prebiotic or biological systems may need to recruit external constraints or expand their network of control interactions to include other autonomous systems. These phenomena seem to contrast with the very idea of closure and the capability of living systems to specify their functional boundaries from within. This paper will analyse from an organisational perspective the role of environmental scaffolds and of different classes of intersystem interactions in prebiotic and su-pra-organismal biological scenarios, and show how the theoretical framework based on the notion of closure can account for these cases

    Evaluation of Synthetic and Semi- synthetic Culture Media for Endo-1,4-β- Glucanases Secretion by Trichoderma koningiopsis

    Get PDF
    AbstractThe actual demand of energy and the environmental concerns together with the reduced fossil fuel reserves have played an important role to convert the second generation bioethanol production into an attractive research area. To convert lignocellulosic biomass to bioethanol the cellulosic components must be hydrolyzed to fermentable sugars. Trichoderma fungi secrete large amounts of enzymes of industrial interest such as cellulases, able to degrade holocellulose in the saccharification of lignocellulosic biomass. In this work we evaluated endo-1.4-β-glucanases enzymatic secretion of Trichoderma koningiopsis from Misiones province, in synthetic medium, with carboxymethylcellulose as carbon source; and semi-synthetic medium, with pine sawdust as carbon source. Higher values of endo-1.4-β-glucanases were reached when the semi-synthetic medium was used. It could be concluded that pine sawdust seems to be a good candidate for utilization as carbon source in culture media aiming to obtain good enzyme secretion, being also an economic and easily available substrate

    The mycoparasitic fungus Clonostachys pityrodes: phylogenetic analysis as a tool for molecular identification

    Get PDF
    Biological control is a promising and sustainable strategy to reduce damage caused by agricultural pests and the use of chemical fungicides. Fungal strains of the genus Clonostachys are studied as biocontrol agent of fungi and nematodes. However, the presence of this fungus in the soils of Misiones remains unexplored. Traditional fungal identification is generally carried out by morphological characterization in Petri dishes, and by observing their reproductive structures under the microscope. In general, with this methodology it is possible to identify to the genus level, however determining up to the species level is usually very complicated in some genera and many times ambiguities are achieved. In this context, molecular data emerges as an important tool to complement morphological information and thus achieve a correct fungal identification. The objective of this work was to molecularly identify with ITS markers a strain of the mycoparasitic fungus Clonostachys HEP30. The nucleic acids were isolated for molecular corroboration. From the extracted genetic material, the ITS1-5,8S-ITS2 region was amplified and sequenced. Once the region of interest was obtained, the information obtained was compared with that existing in the databases, using the Blast (Basic Local Alignment Search Tool) of the NCBI (National Center for Biotechnology Information) and the fungal barcoding database and then phylogenetic analysis was done. The molecular identification and phylogenetic analysis allowed us to classify the fungal isolate Clonotachys HEP 30 with high percentage of identity as a member of Clonostachys pityrodes species.Fil: Bich, Gustavo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; ArgentinaFil: Pedrozo, Tania T.. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; ArgentinaFil: Villalba, Laura L.. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; ArgentinaFil: Zapata, Pedro Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; ArgentinaFil: Castrillo, María Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentin

    Interactions of APE1 with a redox inhibitor: Evidence for an alternate conformation of the enzyme

    Get PDF
    Apurinic/apyrimidinic endonuclease (APE1) is an essential base excision repair protein that also functions as a reduction and oxidation (redox) factor in mammals. Through a thiol-based mechanism, APE1 reduces a number of important transcription factors, including AP-1, p53, NF-κB, and HIF-1α. What is known about the mechanism to date is that the buried residues Cys 65 and Cys 93 are critical for APE1’s redox activity. To further detail the redox mechanism, we developed a chemical footprinting−mass spectrometric assay using N-ethylmaleimide (NEM), an irreversible Cys modifier, to characterize the interaction of the redox inhibitor, E3330, with APE1. When APE1 was incubated with E3330, two NEM-modified products were observed, one with two and a second with seven added NEMs; this latter product corresponds to a fully modified APE1. In a similar control reaction without E3330, only the +2NEM product was observed in which the two solvent-accessible Cys residues, C99 and C138, were modified by NEM. Through hydrogen−deuterium amide exchange with analysis by mass spectrometry, we found that the +7NEM-modified species incorporates approximately 40 more deuterium atoms than the native protein, which exchanges nearly identically as the +2NEM product, suggesting that APE1 can be trapped in a partially unfolded state. E3330 was also found to increase the extent of disulfide bond formation involving redox critical Cys residues in APE1 as assessed by liquid chromatography and tandem mass spectrometry, suggesting a basis for its inhibitory effects on APE1’s redox activity. Collectively, our results suggest that APE1 adopts a partially unfolded state, which we propose is the redox active form of the enzyme

    Self-attraction effect and correction on three absolute gravimeters

    Full text link
    The perturbations of the gravitational field due to the mass distribution of an absolute gravimeter have been studied. The so called Self Attraction Effect (SAE) is crucial for the measurement accuracy, especially for the International Comparisons, and for the uncertainty budget evaluation. Three instruments have been analysed: MPG-2, FG5-238 and IMPG-02. The SAE has been calculated using a numerical method based on FEM simulation. The observed effect has been treated as an additional vertical gravity gradient. The correction (SAC) to be applied to the computed g value has been associated with the specific height level, where the measurement result is typically reported. The magnitude of the obtained corrections is of order 1E-8 m/s2.Comment: 14 pages, 8 figures, submitted to Metrologi

    The inflammatory and normal transcriptome of mouse bladder detrusor and mucosa

    Get PDF
    BACKGROUND: An organ such as the bladder consists of complex, interacting set of tissues and cells. Inflammation has been implicated in every major disease of the bladder, including cancer, interstitial cystitis, and infection. However, scanty is the information about individual detrusor and urothelium transcriptomes in response to inflammation. Here, we used suppression subtractive hybridizations (SSH) to determine bladder tissue- and disease-specific genes and transcriptional regulatory elements (TRE)s. Unique TREs and genes were assembled into putative networks. RESULTS: It was found that the control bladder mucosa presented regulatory elements driving genes such as myosin light chain phosphatase and calponin 1 that influence the smooth muscle phenotype. In the control detrusor network the Pax-3 TRE was significantly over-represented. During development, the Pax-3 transcription factor (TF) maintains progenitor cells in an undifferentiated state whereas, during inflammation, Pax-3 was suppressed and genes involved in neuronal development (synapsin I) were up-regulated. Therefore, during inflammation, an increased maturation of neural progenitor cells in the muscle may underlie detrusor instability. NF-κB was specifically over-represented in the inflamed mucosa regulatory network. When the inflamed detrusor was compared to control, two major pathways were found, one encoding synapsin I, a neuron-specific phosphoprotein, and the other an important apoptotic protein, siva. In response to LPS-induced inflammation, the liver X receptor was over-represented in both mucosa and detrusor regulatory networks confirming a role for this nuclear receptor in LPS-induced gene expression. CONCLUSION: A new approach for understanding bladder muscle-urothelium interaction was developed by assembling SSH, real time PCR, and TRE analysis results into regulatory networks. Interestingly, some of the TREs and their downstream transcripts originally involved in organogenesis and oncogenesis were also activated during inflammation. The latter represents an additional link between inflammation and cancer. The regulatory networks represent key targets for development of novel drugs targeting bladder diseases

    The problem of functional boundaries in prebiotic and inter-biological systems

    Get PDF
    The concept of organisational closure, interpreted as a set of internally pro-duced and mutually dependent constraints, allows understanding organisms as functionally integrated systems capable of self-production and self-maintenance through the control exerted upon biosynthetic processes and the exchanges of matter and energy with the environment. One of the current challenges faced by this theoretical framework is to account for limit cases in which a robust functional closure cannot be realised from within. In order to achieve functional sufficiency and persist, prebiotic or biological systems may need to recruit external constraints or expand their network of control in-teractions to include other autonomous systems. These phenomena seem to contrast with the very idea of closure and the capability of living systems to specify their functional boundaries from within. This paper will analyse from an organisational perspective the role of environmental scaffolds and of dif-ferent classes of intersystem interactions in prebiotic and supra-organismal biological scenarios, and show how the theoretical framework based on the notion of closure can account for these cases
    corecore