123 research outputs found

    Somatic mutations in lymphocytes in patients with immune-mediated aplastic anemia

    Get PDF
    The prevalence and functional impact of somatic mutations in nonleukemic T cells is not well characterized, although clonal T-cell expansions are common. In immune-mediated aplastic anemia (AA), cytotoxic T-cell expansions are shown to participate in disease pathogenesis. We investigated the mutation profiles of T cells in AA by a custom panel of 2533 genes. We sequenced CD4+ and CD8+ T cells of 24 AA patients and compared the results to 20 healthy controls and whole-exome sequencing of 37 patients with AA. Somatic variants were common both in patients and healthy controls but enriched to AA patients' CD8+ T cells, which accumulated most mutations on JAK-STAT and MAPK pathways. Mutation burden was associated with CD8+ T-cell clonality, assessed by T-cell receptor beta sequencing. To understand the effect of mutations, we performed single-cell sequencing of AA patients carrying STAT3 or other mutations in CD8+ T cells. STAT3 mutated clone was cytotoxic, clearly distinguishable from other CD8+ T cells, and attenuated by successful immunosuppressive treatment. Our results suggest that somatic mutations in T cells are common, associate with clonality, and can alter T-cell phenotype, warranting further investigation of their role in the pathogenesis of AA.Peer reviewe

    Genome-wide association study of primary tooth eruption identifies pleiotropic loci associated with height and craniofacial distances

    Get PDF
    Twin and family studies indicate that the timing of primary tooth eruption is highly heritable, with estimates typically exceeding 80%. To identify variants involved in primary tooth eruption we performed a population based genome-wide association study of ‘age at first tooth’ and ‘number of teeth’ using 5998 and 6609 individuals respectively from the Avon Longitudinal Study of Parents and Children (ALSPAC) and 5403 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966). We tested 2,446,724 SNPs imputed in both studies. Analyses were controlled for the effect of gestational age, sex and age of measurement. Results from the two studies were combined using fixed effects inverse variance meta-analysis. We identified a total of fifteen independent loci, with ten loci reaching genome-wide significance (p<5x10−8) for ‘age at first tooth’ and eleven loci for ‘number of teeth’. Together these associations explain 6.06% of the variation in ‘age of first tooth’ and 4.76% of the variation in ‘number of teeth’. The identified loci included eight previously unidentified loci, some containing genes known to play a role in tooth and other developmental pathways, including a SNP in the protein-coding region of BMP4 (rs17563, P= 9.080x10−17). Three of these loci, containing the genes HMGA2, AJUBA and ADK, also showed evidence of association with craniofacial distances, particularly those indexing facial width. Our results suggest that the genome-wide association approach is a powerful strategy for detecting variants involved in tooth eruption, and potentially craniofacial growth and more generally organ development

    Dynamic modeling of gene expression in prokaryotes: application to glucose-lactose diauxie in Escherichia coli

    Get PDF
    Coexpression of genes or, more generally, similarity in the expression profiles poses an unsurmountable obstacle to inferring the gene regulatory network (GRN) based solely on data from DNA microarray time series. Clustering of genes with similar expression profiles allows for a course-grained view of the GRN and a probabilistic determination of the connectivity among the clusters. We present a model for the temporal evolution of a gene cluster network which takes into account interactions of gene products with genes and, through a non-constant degradation rate, with other gene products. The number of model parameters is reduced by using polynomial functions to interpolate temporal data points. In this manner, the task of parameter estimation is reduced to a system of linear algebraic equations, thus making the computation time shorter by orders of magnitude. To eliminate irrelevant networks, we test each GRN for stability with respect to parameter variations, and impose restrictions on its behavior near the steady state. We apply our model and methods to DNA microarray time series' data collected on Escherichia coli during glucose-lactose diauxie and infer the most probable cluster network for different phases of the experiment.Comment: 20 pages, 4 figures; Systems and Synthetic Biology 5 (2011

    Robust regression for periodicity detection in non-uniformly sampled time-course gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In practice many biological time series measurements, including gene microarrays, are conducted at time points that seem to be interesting in the biologist's opinion and not necessarily at fixed time intervals. In many circumstances we are interested in finding targets that are expressed periodically. To tackle the problems of uneven sampling and unknown type of noise in periodicity detection, we propose to use robust regression.</p> <p>Methods</p> <p>The aim of this paper is to develop a general framework for robust periodicity detection and review and rank different approaches by means of simulations. We also show the results for some real measurement data.</p> <p>Results</p> <p>The simulation results clearly show that when the sampling of time series gets more and more uneven, the methods that assume even sampling become unusable. We find that M-estimation provides a good compromise between robustness and computational efficiency.</p> <p>Conclusion</p> <p>Since uneven sampling occurs often in biological measurements, the robust methods developed in this paper are expected to have many uses. The regression based formulation of the periodicity detection problem easily adapts to non-uniform sampling. Using robust regression helps to reject inconsistently behaving data points.</p> <p>Availability</p> <p>The implementations are currently available for Matlab and will be made available for the users of R as well. More information can be found in the web-supplement <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>.</p

    A Linear Model for Transcription Factor Binding Affinity Prediction in Protein Binding Microarrays

    Get PDF
    Protein binding microarrays (PBM) are a high throughput technology used to characterize protein-DNA binding. The arrays measure a protein's affinity toward thousands of double-stranded DNA sequences at once, producing a comprehensive binding specificity catalog. We present a linear model for predicting the binding affinity of a protein toward DNA sequences based on PBM data. Our model represents the measured intensity of an individual probe as a sum of the binding affinity contributions of the probe's subsequences. These subsequences characterize a DNA binding motif and can be used to predict the intensity of protein binding against arbitrary DNA sequences. Our method was the best performer in the Dialogue for Reverse Engineering Assessments and Methods 5 (DREAM5) transcription factor/DNA motif recognition challenge. For the DREAM5 bonus challenge, we also developed an approach for the identification of transcription factors based on their PBM binding profiles. Our approach for TF identification achieved the best performance in the bonus challenge

    TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells

    Get PDF
    TET proteins oxidize 5-methylcytosine in DNA to 5-hydroxymethylcytosine and other oxidation products. We found that simultaneous deletion of Tet2 and Tet3 in mouse CD4+CD8+ double-positive thymocytes resulted in dysregulated development and proliferation of invariant natural killer T cells (iNKT cells). Tet2-Tet3 double-knockout (DKO) iNKT cells displayed pronounced skewing toward the NKT17 lineage, with increased DNA methylation and impaired expression of genes encoding the key lineage-specifying factors T-bet and ThPOK. Transfer of purified Tet2-Tet3 DKO iNKT cells into immunocompetent recipient mice resulted in an uncontrolled expansion that was dependent on the nonclassical major histocompatibility complex (MHC) protein CD1d, which presents lipid antigens to iNKT cells. Our data indicate that TET proteins regulate iNKT cell fate by ensuring their proper development and maturation and by suppressing aberrant proliferation mediated by the T cell antigen receptor (TCR)

    Finding consistent disease subnetworks across microarray datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While contemporary methods of microarray analysis are excellent tools for studying individual microarray datasets, they have a tendency to produce different results from different datasets of the same disease. We aim to solve this reproducibility problem by introducing a technique (SNet). SNet provides both quantitative and descriptive analysis of microarray datasets by identifying specific connected portions of pathways that are significant. We term such portions within pathways as “subnetworks”.</p> <p>Results</p> <p>We tested SNet on independent datasets of several diseases, including childhood ALL, DMD and lung cancer. For each of these diseases, we obtained two independent microarray datasets produced by distinct labs on distinct platforms. In each case, our technique consistently produced almost the same list of significant nontrivial subnetworks from two independent sets of microarray data. The gene-level agreement of these significant subnetworks was between 51.18% to 93.01%. In contrast, when the same pairs of microarray datasets were analysed using GSEA, t-test and SAM, this percentage fell between 2.38% to 28.90% for GSEA, 49.60% tp 73.01% for t-test, and 49.96% to 81.25% for SAM. Furthermore, the genes selected using these existing methods did not form subnetworks of substantial size. Thus it is more probable that the subnetworks selected by our technique can provide the researcher with more descriptive information on the portions of the pathway actually affected by the disease.</p> <p>Conclusions</p> <p>These results clearly demonstrate that our technique generates significant subnetworks and genes that are more consistent and reproducible across datasets compared to the other popular methods available (GSEA, t-test and SAM). The large size of subnetworks which we generate indicates that they are generally more biologically significant (less likely to be spurious). In addition, we have chosen two sample subnetworks and validated them with references from biological literature. This shows that our algorithm is capable of generating descriptive biologically conclusions.</p

    Prenatal and early-life environmental factors, family demographics and cortical brain anatomy in 5-year-olds: an MRI study from FinnBrain Birth Cohort

    Get PDF
    The human brain develops dynamically during early childhood, when the child is sensitive to both genetic programming and extrinsic exposures. Recent studies have found links between prenatal and early life environmental factors, family demographics and the cortical brain morphology in newborns measured by surface area, volume and thickness. Here in this magnetic resonance imaging study, we evaluated whether a similar set of variables associates with cortical surface area and volumes measured in a sample of 170 healthy 5-year-olds from the FinnBrain Birth Cohort Study. We found that child sex, maternal pre-pregnancy body mass index, 5 min Apgar score, neonatal intensive care unit admission and maternal smoking during pregnancy associated with surface areas. Furthermore, child sex, maternal age and maternal level of education associated with brain volumes. Expectedly, many variables deemed important for neonatal brain anatomy (such as birth weight and gestational age at birth) in earlier studies did not associate with brain metrics in our study group of 5-year-olds, which implies that their effects on brain anatomy are age-specific. Future research may benefit from including pre- and perinatal covariates in the analyses when such data are available. Finally, we provide evidence for right lateralization for surface area and volumes, except for the temporal lobes which were left lateralized. These subtle differences between hemispheres are variable across individuals and may be interesting brain metrics in future studies
    corecore