5,481 research outputs found

    Post-buckling behavior of a beam-column on a nonlinear elastic foundation with a gap

    Get PDF
    The structural behavior of an elastic beam-column placed with a gap between two nonlinearity elastic layers each resting on a rigid foundation was examined. The beam-column was laterally supported at both ends and subjected to a uniform transverse load and axial compression. Its slenderness was such that the axial compressive force exceeds the amount that would be necessary to buckle it as a simple supported column. The elastic layers were represented by an elastic foundation with a strongly nonlinear specific reaction taken as a rapidly increasing function of the layer compression. The analytical model developed simulated the entire pattern of the deflection and stress state including layer and end support reactions, under gradually increasing axial force

    LOFAR observations of fine spectral structure dynamics in type IIIb radio bursts

    Get PDF
    Solar radio emission features a large number of fine structures demonstrating great variability in frequency and time. We present spatially resolved spectral radio observations of type IIIb bursts in the 308030-80 MHz range made by the Low Frequency Array (LOFAR). The bursts show well-defined fine frequency structuring called "stria" bursts. The spatial characteristics of the stria sources are determined by the propagation effects of radio waves; their movement and expansion speeds are in the range of 0.1-0.6c. Analysis of the dynamic spectra reveals that both the spectral bandwidth and the frequency drift rate of the striae increase with an increase of their central frequency; the striae bandwidths are in the range of ~20-100 kHz and the striae drift rates vary from zero to ~0.3 MHz s^-1. The observed spectral characteristics of the stria bursts are consistent with the model involving modulation of the type III burst emission mechanism by small-amplitude fluctuations of the plasma density along the electron beam path. We estimate that the relative amplitude of the density fluctuations is of dn/n~10^-3, their characteristic length scale is less than 1000 km, and the characteristic propagation speed is in the range of 400-800 km/s. These parameters indicate that the observed fine spectral structures could be produced by propagating magnetohydrodynamic waves

    Ultrashort pulses and short-pulse equations in (2+1)(2+1)-dimensions

    Full text link
    In this paper, we derive and study two versions of the short pulse equation (SPE) in (2+1)(2+1)-dimensions. Using Maxwell's equations as a starting point, and suitable Kramers-Kronig formulas for the permittivity and permeability of the medium, which are relevant, e.g., to left-handed metamaterials and dielectric slab waveguides, we employ a multiple scales technique to obtain the relevant models. General properties of the resulting (2+1)(2+1)-dimensional SPEs, including fundamental conservation laws, as well as the Lagrangian and Hamiltonian structure and numerical simulations for one- and two-dimensional initial data, are presented. Ultrashort 1D breathers appear to be fairly robust, while rather general two-dimensional localized initial conditions are transformed into quasi-one-dimensional dispersing waveforms

    Features of pulsed synchronization of a systems with a tree-dimensional phase space

    Full text link
    Features of synchronization picture in the system with the limit cycle embedded in a three-dimensional phase space are considered. By the example of Ressler system and Dmitriev - Kislov generator under the action of a periodic sequence of delta - function it is shown, that synchronization picture significantly depends on the direction of pulse action. Features of synchronization tons appeared in these models are observed.Comment: 16 pages, 11 figure

    Dynamics of the Free Surface of a Conducting Liquid in a Near-Critical Electric Field

    Full text link
    Near-critical behavior of the free surface of an ideally conducting liquid in an external electric field is considered. Based on an analysis of three-wave processes using the method of integral estimations, sufficient criteria for hard instability of a planar surface are formulated. It is shown that the higher-order nonlinearities do not saturate the instability, for which reason the growth of disturbances has an explosive character.Comment: 19 page

    A Robust Inverse Scattering Transform for the Focusing Nonlinear Schrödinger Equation

    Full text link
    We propose a modification of the standard inverse scattering transform for the focusing nonlinear Schrödinger equation (also other equations by natural generalization) formulated with nonzero boundary conditions at infinity. The purpose is to deal with arbitrary‐order poles and potentially severe spectral singularities in a simple and unified way. As an application, we use the modified transform to place the Peregrine solution and related higher‐order “rogue wave” solutions in an inverse‐scattering context for the first time. This allows one to directly study properties of these solutions such as their dynamical or structural stability, or their asymptotic behavior in the limit of high order. The modified transform method also allows rogue waves to be generated on top of other structures by elementary Darboux transformations rather than the generalized Darboux transformations in the literature or other related limit processes. © 2019 Wiley Periodicals, Inc.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149759/1/cpa21819.pd

    Backlund transformations for the sl(2) Gaudin magnet

    Get PDF
    Elementary, one- and two-point, Backlund transformations are constructed for the generic case of the sl(2) Gaudin magnet. The spectrality property is used to construct these explicitly given, Poisson integrable maps which are time-discretizations of the continuous flows with any Hamiltonian from the spectral curve of the 2x2 Lax matrix.Comment: 17 pages, LaTeX, refs adde
    corecore