1,939 research outputs found

    Benchmarking adaptive indexing

    Get PDF
    Ideally, realizing the best physical design for the current and all subsequent workloads would impact neither performance nor storage usage. In reality, workloads and datasets can change dramatically over time and index creation impacts the performance of concurrent user and system activity. We propose a framework that evaluates the key premise of adaptive indexing --- a new indexing paradigm where index creation and re-organization take place automatically and incrementally, as a side-effect of query execution. We focus on how the incremental costs and benefits of dynamic reorganization are distributed across the workload's lifetime. We believe measuring the costs and utility of the stages of adaptation are relevant metrics for evaluating new query processing paradigms and comparing them to traditional approaches

    SZ and X-ray combined analysis of a distant galaxy cluster, RX J2228+2037.

    Get PDF
    We have performed a combined analysis of X-ray and Sunyaev-Zel'dovich data in the direction of the distant galaxy cluster, RX J2228+2037. Fitting a ÎČ\beta-model to the high-resolution HRI data gives rc=103±12h70−1r_c = 103 \pm 12 h_{70}^{-1} kpc and ÎČ=0.54±0.03\beta=0.54 \pm 0.03. The dependency of the Sunyaev-Zel'dovich effect with respect to the gas temperature allows us, through the additional use of the 21 GHz data of the cluster, to determine kBTe=10.4±1.8h701/2k_B T_e=10.4 \pm 1.8 h_{70}^{1/2} keV. Extrapolating the gas density profile out to the virial radius (Rv=r178=2.9R_v=r_{178}=2.9 Mpc), we derived a gas mass of Mg(r<Rv)=(4.0±0.2)×1014h70−5/2M⊙M_{g}(r<R_v)=(4.0\pm 0.2)\times 10^{14} h_{70}^{-5/2} \rm{M}_\odot. Within the hypothesis of hydrostatic equilibrium, the corresponding extrapolated total mass for this source is: Mtot(r<Rv)=(1.8±0.4)×1015h−1M⊙M_{tot}(r<R_v)=(1.8 \pm 0.4)\times 10^{15} h^{-1} \rm{M}_\odot, which corresponds to a gas fraction of fgas=0.22±0.06h70−3/2f_{gas}=0.22\pm 0.06 h_{70}^{-3/2}. Our results on the temperature and on the cluster mass classify RX J2228+2037 among the distant, hot and very massive galaxy clusters. Our work highlights the power of the association of galaxy cluster mapping observations in X-ray and the SZ effect to derive the cluster's physical properties, even without X-ray spectroscopy.Comment: 7 pages, 4 figures, accepted for publication in A&

    Probabilistic Search for Object Segmentation and Recognition

    Full text link
    The problem of searching for a model-based scene interpretation is analyzed within a probabilistic framework. Object models are formulated as generative models for range data of the scene. A new statistical criterion, the truncated object probability, is introduced to infer an optimal sequence of object hypotheses to be evaluated for their match to the data. The truncated probability is partly determined by prior knowledge of the objects and partly learned from data. Some experiments on sequence quality and object segmentation and recognition from stereo data are presented. The article recovers classic concepts from object recognition (grouping, geometric hashing, alignment) from the probabilistic perspective and adds insight into the optimal ordering of object hypotheses for evaluation. Moreover, it introduces point-relation densities, a key component of the truncated probability, as statistical models of local surface shape.Comment: 18 pages, 5 figure

    Star Formation in M51 Triggered by Galaxy Interaction

    Get PDF
    We have mapped the inner 360'' regions of M51 in the 158micron [CII] line at 55'' spatial resolution using the Far-infrared Imaging Fabry-Perot Interferometer (FIFI) on the Kuiper Airborne Observatory (KAO). The emission is peaked at the nucleus, but is detectable over the entire region mapped, which covers much of the optical disk of the galaxy. There are also two strong secondary peaks at ~43% to 70% of the nuclear value located roughly 120'' to the north-east, and south-west of the nucleus. These secondary peaks are at the same distance from the nucleus as the corotation radius of the density wave pattern. The density wave also terminates at this location, and the outlying spiral structure is attributed to material clumping due to the interaction between M51 and NGC5195. This orbit crowding results in cloud-cloud collisions, stimulating star formation, that we see as enhanced [CII] line emission. The [CII] emission at the peaks originates mainly from photodissociation regions (PDRs) formed on the surfaces of molecular clouds that are exposed to OB starlight, so that these [CII] peaks trace star formation peaks in M51. The total mass of [CII] emitting photodissociated gas is ~2.6x10^{8} M_{sun}, or about 2% of the molecular gas as estimated from its CO(1-0) line emission. At the peak [CII] positions, the PDR gas mass to total gas mass fraction is somewhat higher, 3-17%, and at the secondary peaks the mass fraction of the [CII] emitting photodissociated gas can be as high as 72% of the molecular mass.... (continued)Comment: 14 pages, 6 figures, Accepted in ApJ (for higher resolution figures contact the author

    The 2006 Radio Outburst of a Microquasar Cyg X-3: Observation and Data

    Full text link
    We present the results of the multi-frequency observations of radio outburst of the microquasar Cyg X-3 in February and March 2006 with the Nobeyama 45-m telescope, the Nobeyama Millimeter Array, and the Yamaguchi 32-m telescope. Since the prediction of a flare by RATAN-600, the source has been monitored from Jan 27 (UT) with these radio telescopes. At the eighteenth day after the quench of the activity, successive flares exceeding 1 Jy were observed successfully. The time scale of the variability in the active phase is presumably shorter in higher frequency bands. We also present the result of a follow-up VLBI observation at 8.4 GHz with the Japanese VLBI Network (JVN) 2.6 days after the first rise. The VLBI image exhibits a single core with a size of <8 mas (80 AU). The observed image was almost stable, although the core showed rapid variation in flux density. No jet structure was seen at a sensitivity of Tb=7.5×105T_b = 7.5\times 10^5 K.Comment: 17 pages,6 figures; accepted by PAS

    Chiral patterns arising from electrostatic growth models

    Full text link
    Recently, unusual and strikingly beautiful seahorse-like growth patterns have been observed under conditions of quasi-two-dimensional growth. These `S'-shaped patterns strongly break two-dimensional inversion symmetry; however such broken symmetry occurs only at the level of overall morphology, as the clusters are formed from achiral molecules with an achiral unit cell. Here we describe a mechanism which gives rise to chiral growth morphologies without invoking microscopic chirality. This mechanism involves trapped electrostatic charge on the growing cluster, and the enhancement of growth in regions of large electric field. We illustrate the mechanism with a tree growth model, with a continuum model for the motion of the one-dimensional boundary, and with microscopic Monte Carlo simulations. Our most dramatic results are found using the continuum model, which strongly exhibits spontaneous chiral symmetry breaking, and in particular finned `S' shapes like those seen in the experiments.Comment: RevTeX, 12 pages, 9 figure

    Arm & Interarm Star Formation in Spiral Galaxies

    Full text link
    We investigate the relationship between spiral arms and star formation in the grand-design spirals NGC 5194 and NGC 628 and in the flocculent spiral NGC 6946. Filtered maps of near-IR (3.6 micron) emission allow us to identify "arm regions" that should correspond to regions of stellar mass density enhancements. The two grand-design spirals show a clear two-armed structure, while NGC 6946 is more complex. We examine these arm and interarm regions, looking at maps that trace recent star formation - far-ultraviolet (GALEX NGS) and 24 micron emission (Spitzer, SINGS) - and cold gas - CO (Heracles) and HI (Things). We find the star formation tracers and CO more concentrated in the spiral arms than the stellar 3.6 micron flux. If we define the spiral arms as the 25% highest pixels in the filtered 3.6 micron images, we find that the majority (60%) of star formation tracers occurs in the interarm regions; this result persists qualitatively even when considering the potential impact of finite data resolution and diffuse interarm 24 micron emission. Even with a generous definition of the arms (45% highest pixels), interarm regions still contribute at least 30% to the integrated star formation rate tracers. We look for evidence that spiral arms trigger star or cloud formation using the ratios of star formation rate (SFR, traced by a combination of FUV and 24 micron emission) to H_2 (traced by CO) and H_2 to HI. Any enhancement of SFR / M(H_2) in the arm region is very small (less than 10%) and the grand design spirals show no enhancement compared to the flocculent target. Arm regions do show a weak enhancement in H_2/HI compared to the interarm regions, but at a fixed gas surface density there is little clear enhancement in the H_2/HI ratio in the arm regions. Thus, it seems that spiral arms may only act to concentrate the gas to higher densities in the arms.Comment: 11 pages, 9 Figures, accepted by Ap
    • 

    corecore